
OptaPlanner User Guide
Version 6.0.0.Beta3

by The OptaPlanner team [http://www.optaplanner.org/community/team.html]

http://www.optaplanner.org/community/team.html
http://www.optaplanner.org/community/team.html

iii

.. ix

1. Planner introduction .. 1

1.1. What is OptaPlanner? ... 1

1.2. What is a planning problem? ... 3

1.2.1. A planning problem is NP-complete .. 3

1.2.2. A planning problem has (hard and soft) constraints 3

1.2.3. A planning problem has a huge search space .. 4

1.3. Download and run the examples ... 4

1.3.1. Get the release zip and run the examples ... 4

1.3.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans) 6

1.3.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT 7

1.3.4. Build OptaPlanner from source ... 7

1.4. Status of OptaPlanner ... 8

1.5. Compatibility ... 8

1.6. Questions, issues and blog ... 9

2. Quick start ... 11

2.1. Cloud balancing tutorial ... 11

2.1.1. Problem statement ... 11

2.1.2. Problem size .. 12

2.1.3. Domain model diagram ... 13

2.1.4. Main method .. 14

2.1.5. Solver configuration .. 15

2.1.6. Domain model implementation .. 17

2.1.7. Score configuration .. 20

2.1.8. Beyond this tutorial .. 24

3. Use cases and examples ... 25

3.1. Examples overview ... 25

3.2. Basic examples .. 26

3.2.1. N queens ... 26

3.2.2. Cloud balancing ... 30

3.2.3. Traveling salesman (TSP - Traveling salesman problem) 30

3.2.4. Manners 2009 .. 31

3.3. Real examples .. 31

3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course scheduling) 31

3.3.2. Machine reassignment (Google ROADEF 2012) 33

3.3.3. Vehicle routing ... 35

3.3.4. Hospital bed planning (PAS - Patient admission scheduling) 37

3.4. Difficult examples .. 39

3.4.1. Exam timetabling (ITC 2007 track 1 - Examination) 39

3.4.2. Employee rostering (INRC 2010 - Nurse rostering) 43

3.4.3. Sport scheduling (TTP - Traveling tournament problem) 48

4. Planner configuration .. 51

4.1. Overview .. 51

4.2. Solver configuration .. 52

OptaPlanner User Guide

iv

4.2.1. Solver configuration by XML file .. 52

4.2.2. Solver configuration by Java API ... 53

4.3. Model your planning problem ... 54

4.3.1. Is this class a problem fact or planning entity? ... 54

4.3.2. Problem fact .. 55

4.3.3. Planning entity and planning variables ... 57

4.3.4. Planning value and planning value ranges ... 61

4.3.5. Planning problem and planning solution ... 69

4.4. Use the Solver .. 76

4.4.1. The Solver interface ... 76

4.4.2. Solving a problem .. 77

4.4.3. Environment mode: Are there bugs in my code? 78

4.4.4. Logging level: What is the Solver doing? ... 80

5. Score calculation ... 83

5.1. Score terminology ... 83

5.1.1. What is a score? .. 83

5.1.2. Score constraint signum (positive or negative) .. 83

5.1.3. Score constraint weight .. 85

5.1.4. Score level .. 85

5.1.5. Pareto scoring (AKA multi-objective optimization scoring) 87

5.1.6. Combining score techniques ... 89

5.1.7. The Score interface .. 89

5.2. Choose a Score definition ... 91

5.2.1. SimpleScore .. 91

5.2.2. HardSoftScore (recommended) ... 92

5.2.3. HardMediumSoftScore .. 92

5.2.4. BendableScore ... 92

5.2.5. Implementing a custom Score ... 93

5.3. Calculate the Score .. 93

5.3.1. Score calculation types ... 93

5.3.2. Simple Java score calculation ... 94

5.3.3. Incremental Java score calculation .. 95

5.3.4. Drools score calculation .. 99

5.3.5. Detecting invalid scores .. 103

5.4. Score calculation performance tricks .. 103

5.4.1. Overview .. 103

5.4.2. Average calculation count per second .. 104

5.4.3. Incremental score calculation (with delta's) ... 104

5.4.4. Avoid calling remote services during score calculation 105

5.4.5. Unused constraint .. 105

5.4.6. Build-in hard constraint ... 106

5.4.7. Other performance tricks ... 106

5.4.8. Score trap .. 106

5.4.9. stepLimit benchmark ... 108

v

5.5. Reusing the score calculation outside the Solver ... 108

6. Optimization algorithms ... 111

6.1. Search space size in the real world .. 111

6.2. Does Planner find the optimal solution? .. 111

6.3. Architecture overview .. 112

6.4. Optimization algorithms overview ... 113

6.5. Which optimization algorithms should I use? ... 113

6.6. SolverPhase ... 114

6.7. Scope overview .. 116

6.8. Termination ... 117

6.8.1. TimeMillisSpendTermination .. 118

6.8.2. ScoreAttainedTermination ... 119

6.8.3. StepCountTermination .. 119

6.8.4. UnimprovedStepCountTermination ... 119

6.8.5. Combining multiple Terminations ... 120

6.8.6. Asynchronous termination from another thread 120

6.9. SolverEventListener ... 121

6.10. Custom SolverPhase ... 121

7. Move and neighborhood selection ... 125

7.1. Move and neighborhood introduction .. 125

7.1.1. What is a Move? .. 125

7.1.2. What is a MoveSelector? .. 126

7.1.3. Subselecting of entities, values and other moves 126

7.2. General Selector features .. 128

7.2.1. CacheType: Create moves ahead of time or Just In Time 128

7.2.2. SelectionOrder: original, sorted, random, shuffled or probabilistic 129

7.2.3. Recommended combinations of CacheType and SelectionOrder 131

7.2.4. Filtered selection .. 133

7.2.5. Sorted selection ... 135

7.2.6. Probabilistic selection ... 138

7.3. Generic MoveSelectors ... 138

7.3.1. changeMoveSelector .. 138

7.3.2. swapMoveSelector ... 140

7.3.3. pillarSwapMoveSelector .. 141

7.3.4. subChainChangeMoveSelector .. 142

7.3.5. subChainSwapMoveSelector ... 143

7.4. Combining multiple MoveSelectors ... 144

7.4.1. unionMoveSelector ... 144

7.4.2. cartesianProductMoveSelector .. 145

7.5. EntitySelector .. 146

7.6. ValueSelector .. 146

7.7. Custom moves .. 147

7.7.1. Which move types might be missing in my implementation? 147

7.7.2. Custom moves introduction ... 147

OptaPlanner User Guide

vi

7.7.3. The interface Move .. 147

7.7.4. MoveListFactory: the easy way to generate custom moves 151

7.7.5. MoveIteratorFactory: generate custom moves just in time 152

7.7.6. Move generation through DRL .. 153

8. Construction heuristics ... 155

8.1. Overview .. 155

8.2. First Fit ... 155

8.2.1. Algorithm description .. 155

8.2.2. Configuration .. 156

8.3. First Fit Decreasing ... 156

8.3.1. Algorithm description .. 156

8.3.2. Configuration .. 157

8.4. Best Fit .. 158

8.4.1. Algorithm description .. 158

8.4.2. Configuration .. 158

8.5. Best Fit Decreasing ... 158

8.5.1. Algorithm description .. 158

8.5.2. Configuration .. 159

8.6. Cheapest insertion .. 159

8.6.1. Algorithm description .. 159

8.6.2. Configuration .. 159

8.7. Regret insertion .. 159

8.7.1. Algorithm description .. 159

8.7.2. Configuration .. 159

9. Local search .. 161

9.1. Overview .. 161

9.2. Hill climbing (simple local search) .. 161

9.2.1. Algorithm description .. 161

9.3. Tabu search ... 163

9.3.1. Algorithm description .. 163

9.4. Simulated annealing .. 164

9.4.1. Algorithm description .. 164

9.5. Late acceptance .. 165

9.5.1. Algorithm description .. 165

9.6. About neighborhoods, moves and steps ... 166

9.6.1. Move generation tips .. 166

9.6.2. A step .. 167

9.6.3. Getting stuck in local optima ... 169

9.7. Deciding the next step ... 170

9.7.1. Acceptor .. 171

9.7.2. Forager .. 174

9.8. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or

Acceptor .. 175

10. Evolutionary algorithms ... 177

vii

10.1. Overview .. 177

10.2. Evolutionary Strategies .. 177

10.3. Genetic algorithms .. 177

11. Hyperheuristics .. 179

11.1. Overview .. 179

12. Exact methods ... 181

12.1. Overview .. 181

12.2. Brute Force ... 181

12.2.1. Algorithm description .. 181

12.2.2. Configuration .. 183

12.3. Depth-first search .. 183

12.3.1. Algorithm description .. 183

12.3.2. Configuration .. 184

13. Benchmarking and tweaking .. 185

13.1. Finding the best Solver configuration .. 185

13.2. Doing a benchmark ... 185

13.2.1. Adding the extra dependency .. 185

13.2.2. Building and running a PlannerBenchmark ... 185

13.2.3. ProblemIO: input and output of Solution files .. 188

13.2.4. Writing the output solution of the benchmark runs 190

13.2.5. Warming up the HotSpot compiler ... 190

13.3. Benchmark report .. 190

13.3.1. HTML report ... 190

13.3.2. Summary statistics .. 191

13.3.3. Statistic per data set (graph and CSV) ... 192

13.3.4. Ranking the Solvers ... 195

13.4. Advanced benchmarking .. 196

13.4.1. Benchmarking performance tricks .. 196

13.4.2. Template based benchmarking and matrix benchmarking 198

14. Repeated planning ... 201

14.1. Introduction to repeated planning ... 201

14.2. Backup planning ... 201

14.3. Continuous planning (windowed planning) .. 201

14.3.1. Immovable planning entities .. 202

14.4. Real-time planning (event based planning) .. 203

viii

ix

x

Chapter 1.

1

Chapter 1. Planner introduction

1.1. What is OptaPlanner?

OptaPlanner [http://www.optaplanner.org] is a lightweight, embeddable planning engine

that optimizes planning problems. It solves use cases, such as:

• Employee shift rostering: timetabling nurses, repairmen, ...

• Agenda scheduling: scheduling meetings, appointments, maintenance jobs,

advertisements, ...

• Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...

• Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

• Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers

nodes, ...

• Job shop scheduling: planning car assembly lines, machine queue planning, workforce task

planning, ...

• Cutting stock: minimizing waste while cutting paper, steel, carpet, ...

• Sport scheduling: planning football leagues, baseball leagues, ...

• Financial optimization: investment portfolio optimization, risk spreading, ...

http://www.optaplanner.org
http://www.optaplanner.org

Chapter 1. Planner introduction

2

Every organization faces planning problems: provide products or services with a limited set

of constrained resources (employees, assets, time and money). OptaPlanner optimizes such

planning to do more business with less resources. This is known as Constraint Satisfaction

Programming (which is part of the discipline Operations Research).

OptaPlanner helps normal JavaTM programmers solve constraint satisfaction problems efficiently.

Under the hood, it combines optimization heuristics and metaheuristics with very efficient score

calculation.

OptaPlanner is open source software, released under the Apache Software License 2.0 [http://

www.apache.org/licenses/LICENSE-2.0.html]. This license is very liberal and allows reuse for

commercial purposes. Read the layman's explanation [http://www.apache.org/foundation/licence-

FAQ.html#WhatDoesItMEAN]. OptaPlanner is 100% pure JavaTM, runs on any JVM [compatibility]

and is available in the Maven Central Repository too.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN
compatibility
compatibility

What is a planning problem?

3

1.2. What is a planning problem?

1.2.1. A planning problem is NP-complete

All the use cases above are probably NP-complete [http://en.wikipedia.org/wiki/NP-complete]. In

layman's terms, this means:

• It's easy to verify a given solution to a problem in reasonable time.

• There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

Note

(*) At least, none of the smartest computer scientists in the world have found such

a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for

every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if such a silver bullet

actually exists or not [http://en.wikipedia.org/wiki/P_%3D_NP_problem].

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,

because the 2 common techniques won't suffice:

• A brute force algorithm (even a smarter variant) will take too long.

• A quick algorithm, for example in bin packing, putting in the largest items first, will return a

solution that is usually far from optimal.

By using advanced optimization algorithms, Planner does find a good solution in reasonable

time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least 2 levels of constraints:

• A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different

lessons at the same time.

• A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A

does not like to teach on Friday afternoon.

Some problems have positive constraints too:

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://en.wikipedia.org/wiki/P_%3D_NP_problem

Chapter 1. Planner introduction

4

• A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes

to teach on Monday morning.

Some basic problems (such as N Queens) only have hard constraints. Some problems have 3 or

more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each

solution of a planning problem can be graded with a score. With Planner, score constraints are

written in an Object Orientated language, such as Java code or Drools rules. Such code is

easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

• A possible solution is any solution, whether or not it breaks any number of constraints. Planning

problems tend to have an incredibly large number of possible solutions. Many of those solutions

are worthless.

• A feasible solution is a solution that does not break any (negative) hard constraints. The number

of feasible solutions tends to be relative to the number of possible solutions. Sometimes there

are no feasible solutions. Every feasible solution is a possible solution.

• An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a

few optimal solutions. There is always at least 1 optimal solution, even in the case that there

are no feasible solutions and the optimal solution isn't feasible.

• The best solution found is the solution with the highest score found by an implementation in a

given amount of time. The best solution found is likely to be feasible and, given enough time,

it's an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a

small dataset. As you can see in the examples, most instances have a lot more possible solutions

than the minimal number of atoms in the known universe (10^80). Because there is no silver bullet

to find the optimal solution, any implementation is forced to evaluate at least a subset of all those

possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly

large number of possible solutions. Depending on the use case, some optimization algorithms

perform better than others, but it's impossible to tell in advance. With Planner, it is easy to switch

the optimization algorithm, by changing the solver configuration in a few lines of XML or code.

1.3. Download and run the examples

1.3.1. Get the release zip and run the examples

To try it now:

Get the release zip and run the examples

5

• Download a release zip of OptaPlanner from the OptaPlanner website [http://

www.optaplanner.org].

• Unzip it.

• Open the directory examples and run the script.

Linux or Mac:

$ cd examples

$./runExamples.sh

Windows:

$ cd examples

$ runExamples.bat

The Examples GUI application will open. Just pick an example:

http://www.optaplanner.org
http://www.optaplanner.org
http://www.optaplanner.org

Chapter 1. Planner introduction

6

Note

Planner itself has no GUI dependencies. It runs just as well on a server or a mobile

JVM as it does on the desktop.

1.3.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE:

1. Configure your IDE:

• In IntelliJ and NetBeans, just open the file examples/sources/pom.xml as a new project,

the maven integration will take care of the rest.

• In Eclipse, open a new project for the directory examples/sources.

• Add all the jars to the classpath from the directory binaries and the directory examples/

binaries, except for the file examples/binaries/optaplanner-examples-*.jar.

Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT

7

• Add the Java source directory src/main/java and the Java resources directory src/

main/resources.

2. Create a run configuration:

• Main class: org.optaplanner.examples.app.OptaPlannerExamplesApp

• VM parameters (optional): -Xmx512M -server

• Working directory: examples (this is the directory that contains the directory data)

3. Run that run configuration.

1.3.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT

The OptaPlanner jars are also available in the central maven repository [http://

search.maven.org/#search|ga|1|org.optaplanner] (and also in the JBoss maven repository [https://

repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~]).

If you use Maven, just add a dependency to optaplanner-core in your project's pom.xml:

 <dependency>

 <groupId>org.optaplanner</groupId>

 <artifactId>optaplanner-core</artifactId>

 <version>...</version>

 </dependency>

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the central maven

repository [http://search.maven.org/#search|ga|1|org.optaplanner].

If you're still using ANT (without Ivy), copy all the jars from the download zip's binaries directory

and manually verify that your classpath doesn't contain duplicate jars.

Note

The download zip's binaries directory contains far more jars then optaplanner-

core actually uses. It also contains the jars used by other modules, such as

optaplanner-benchmark.

Check the maven repository pom.xml files to determine the minimal dependency

set for a specific version of a specific module.

1.3.4. Build OptaPlanner from source

You can also easily build OptaPlanner from source yourself.

http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner
http://search.maven.org/#search|ga|1|org.optaplanner

Chapter 1. Planner introduction

8

Set up Git [http://help.github.com/set-up-git-redirect] and clone optaplanner from GitHub (or

alternatively, download the zipball [https://github.com/droolsjbpm/optaplanner/zipball/master]):

$ git clone git@github.com:droolsjbpm/optaplanner.git optaplanner

...

Then do a Maven 3 [http://maven.apache.org/] build:

$ cd optaplanner

$ mvn clean install -DskipTests

...

After that, you can run any example directly from the command line, just run this command and

pick an example:

$ cd optaplanner-examples

$ mvn exec:exec

...

1.4. Status of OptaPlanner

OptaPlanner is production ready. The API is almost stable but

backward incompatible changes can occur. With the recipe called

UpgradeFromPreviousVersionRecipe.txt [https://github.com/droolsjbpm/optaplanner/blob/

master/optaplanner-distribution/src/main/assembly/filtered-resources/

UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade to a newer version and quickly

deal with any backwards incompatible changes. That recipe file is included in every release.

1.5. Compatibility

OptaPlanner is 100% pure JavaTM and runs on any JVM 1.6 or higher.

http://help.github.com/set-up-git-redirect
http://help.github.com/set-up-git-redirect
https://github.com/droolsjbpm/optaplanner/zipball/master
https://github.com/droolsjbpm/optaplanner/zipball/master
http://maven.apache.org/
http://maven.apache.org/
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/optaplanner/blob/master/optaplanner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt

Questions, issues and blog

9

1.6. Questions, issues and blog

Your questions and comments are welcome on the user mailing list [http://www.jboss.org/

drools/lists.html]. Start the subject of your mail with [planner]. You can read/

write to the user mailing list without littering your mailbox through this web forum

[http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html] or this newsgroup [nntp://

news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for

the OptaPlanner code or for this manual to our issue tracker [https://issues.jboss.org/browse/

PLANNER].

Pull requests are very welcome and get priority treatment! By open sourcing your improvements,

you 'll benefit from our peer review and from our improvements made upon your improvements.

Check our blog [http://blog.athico.com/search/label/planner], Google+(OptaPlanner

[https://plus.google.com/112724449845406009021], Geoffrey De Smet [https://

plus.google.com/112811208792575157490]) and twitter (Geoffrey De Smet [http://twitter.com/

geoffreydesmet]) for news and articles. If OptaPlanner helps you solve your problem, don't forget

to blog or tweet about it!

http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
http://drools.46999.n3.nabble.com/Drools-User-forum-f47000.html
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER
https://issues.jboss.org/browse/PLANNER
http://blog.athico.com/search/label/planner
http://blog.athico.com/search/label/planner
https://plus.google.com/112724449845406009021
https://plus.google.com/112724449845406009021
https://plus.google.com/112811208792575157490
https://plus.google.com/112811208792575157490
https://plus.google.com/112811208792575157490
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet

10

Chapter 2.

11

Chapter 2. Quick start

2.1. Cloud balancing tutorial

2.1.1. Problem statement

Suppose your company owns a number of cloud computers and needs to run a number of

processes on those computers. Assign each process to a computer under the following 4

constraints.

Hard constraints which must be fulfilled:

• Every computer must be able to handle the minimum hardware requirements of the sum of its

processes:

• The CPU power of a computer must be at least the sum of the CPU power required by the

processes assigned to that computer.

• The RAM memory of a computer must be at least the sum of the RAM memory required by

the processes assigned to that computer.

• The network bandwidth of a computer must be at least the sum of the network bandwidth

required by the processes assigned to that computer.

Soft constraints which should be optimized:

• Each computer that has one or more processes assigned, incurs a maintenance cost (which

is fixed per computer).

• Minimize the total maintenance cost.

How would you do that? This problem is a form of bin packing. Here's a simplified example where

we assign 4 processes to 2 computers with 2 constraints (CPU and RAM) with a simple algorithm:

Chapter 2. Quick start

12

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger

processes first and assigns the smaller processes to the remaining space. As you can see, it's

not optimal, because it does not leave enough room to assign the yellow process D.

OptaPlanner does find the more optimal solution fast, by using additional, smarter algorithms. And

it scales too: both in data (more processes, more computers) and constraints (more hardware

requirements, other constraints). So let's take a look how we can use Planner for this.

2.1.2. Problem size

cb-0002comp-0006proc has 2 computers and 6 processes with a search space

 of 64.

cb-0003comp-0009proc has 3 computers and 9 processes with a search space

 of 10^4.

cb-0004comp-0012proc has 4 computers and 12 processes with a search space

 of 10^7.

cb-0100comp-0300proc has 100 computers and 300 processes with a search space

 of 10^600.

Domain model diagram

13

cb-0200comp-0600proc has 200 computers and 600 processes with a search space

 of 10^1380.

cb-0400comp-1200proc has 400 computers and 1200 processes with a search space

 of 10^3122.

cb-0800comp-2400proc has 800 computers and 2400 processes with a search space

 of 10^6967.

2.1.3. Domain model diagram

Let's start by taking a look at the domain model. It's pretty simple:

• Computer: represents a computer with certain hardware (CPU power, RAM memory, network

bandwidth) and maintenance cost.

• Process: represents a process with a demand. Needs to be assigned to a Computer by

OptaPlanner.

• CloudBalance: represents a problem. Contains every Computer and Process for a certain data

set.

In the UML class diagram above, the Planner concepts are already annotated:

Chapter 2. Quick start

14

• Planning entity: the class (or classes) that changes during planning. In this example that's the

class Process.

• Planning variable: the property (or properties) of a planning entity class that changes during

planning. In this examples, that's the property computer on the class Process.

• Solution: the class that represents a data set and contains all planning entities. In this example

that's the class CloudBalance.

2.1.4. Main method

Try it yourself. Download and configure the examples in your favorite IDE. Run

org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWorld. By default, it

is configured to run for 120 seconds. It will execute this code:

Example 2.1. CloudBalancingHelloWorld.java

public class CloudBalancingHelloWorld {

 public static void main(String[] args) {

 // Build the Solver

 SolverFactory solverFactory = new XmlSolverFactory(

 "/org/optaplanner/examples/cloudbalancing/solver/

cloudBalancingSolverConfig.xml");

 Solver solver = solverFactory.buildSolver();

 // Load a problem with 400 computers and 1200 processes

 CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator().createCloudBalance(400, 1200);

 // Solve the problem

 solver.setPlanningProblem(unsolvedCloudBalance);

 solver.solve();

 CloudBalance solvedCloudBalance = (CloudBalance) solver.getBestSolution();

 // Display the result

 System.out.println("\nSolved cloudBalance with 400 computers and 1200

 processes:\n"

 + toDisplayString(solvedCloudBalance));

 }

 ...

}

The code above does this:

• Build the Solver based on a solver configuration (in this case an XML file).

Solver configuration

15

 SolverFactory solverFactory = new XmlSolverFactory(

 "/org/optaplanner/examples/cloudbalancing/solver/

cloudBalancingSolverConfig.xml");

 Solver solver = solverFactory.buildSolver();

• Load the problem. CloudBalancingGenerator generates a random problem: you'll replace this

with a class that loads a real problem, for example from a database.

 CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator().createCloudBalance(400, 1200);

• Solve the problem.

 solver.setPlanningProblem(unsolvedCloudBalance);

 solver.solve();

 CloudBalance solvedCloudBalance = (CloudBalance) solver.getBestSolution();

• Display the result.

 System.out.println("\nSolved cloudBalance with 400 computers and 1200

 processes:\n"

 + toDisplayString(solvedCloudBalance));

The only non-obvious part is building the Solver. Let's examine that.

2.1.5. Solver configuration

Take a look at the solver configuration:

Example 2.2. cloudBalancingSolverConfig.xml

<?xml version="1.0" encoding="UTF-8"?>

<solver>

 <!--<environmentMode>FAST_ASSERT</environmentMode>-->

 <!-- Domain model configuration -->

 <solutionClass>org.optaplanner.examples.cloudbalancing.domain.CloudBalance</

solutionClass>

 <planningEntityClass>org.optaplanner.examples.cloudbalancing.domain.CloudProcess</

planningEntityClass>

 <!-- Score configuration -->

Chapter 2. Quick start

16

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>

 <simpleScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.solver.score.CloudBalancingSimpleScoreCalculator</

simpleScoreCalculatorClass>

 <!--<scoreDrl>/org/optaplanner/examples/cloudbalancing/solver/

cloudBalancingScoreRules.drl</scoreDrl>-->

 </scoreDirectorFactory>

 <!-- Optimization algorithms configuration -->

 <termination>

 <maximumSecondsSpend>120</maximumSecondsSpend>

 </termination>

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType>

 </constructionHeuristic>

 <localSearch>

 <acceptor>

 <entityTabuSize>7</entityTabuSize>

 </acceptor>

 <forager>

 <acceptedCountLimit>1000</acceptedCountLimit>

 </forager>

 </localSearch>

</solver>

This solver configuration consists out of 3 parts:

• Domain model configuration: What can Planner change? We need to make Planner aware

of our domain classes:

 <solutionClass>org.optaplanner.examples.cloudbalancing.domain.CloudBalance</

solutionClass>

 <planningEntityClass>org.optaplanner.examples.cloudbalancing.domain.CloudProcess</

planningEntityClass>

• Score configuration: How should Planner optimize the planning variables? Since we have

hard and soft constraints, we use a HardSoftScore. But we also need to tell Planner how to

calculate such the score, depending on our business requirements. Further down, we 'll look into

2 alternatives to calculate the score: using a simple Java implementation or using Drools DRL.

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>

Domain model implementation

17

 <simpleScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.solver.score.CloudBalancingSimpleScoreCalculator</

simpleScoreCalculatorClass>

 <!--<scoreDrl>/org/optaplanner/examples/cloudbalancing/solver/

cloudBalancingScoreRules.drl</scoreDrl>-->

 </scoreDirectorFactory>

• Optimization algorithms configuration: How should Planner optimize it? Don't worry about

this for now: this is a good default configuration that works on most planning problems. It

will already surpass human planners and most in-house implementations. Using the Planner

benchmark toolkit, you can tweak it to get even better results.

 <termination>

 <maximumSecondsSpend>120</maximumSecondsSpend>

 </termination>

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT_DECREASING</

constructionHeuristicType>

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType>

 </constructionHeuristic>

 <localSearch>

 <acceptor>

 <entityTabuSize>7</entityTabuSize>

 </acceptor>

 <forager>

 <acceptedCountLimit>1000</acceptedCountLimit>

 </forager>

 </localSearch>

Let's examine the domain model classes and the score configuration.

2.1.6. Domain model implementation

2.1.6.1. The class Computer

The class Computer is a POJO (Plain Old Java Object), nothing special. Usually, you'll have more

of these kind of classes.

Example 2.3. CloudComputer.java

public class CloudComputer ... {

 private int cpuPower;

 private int memory;

Chapter 2. Quick start

18

 private int networkBandwidth;

 private int cost;

 ... // getters

}

2.1.6.2. The class Process

The class Process is a little bit special. We need to tell Planner that it can change the field

computer, so we annotate the class with @PlanningEntity and the getter getComputer with

@PlanningVariable:

Example 2.4. CloudProcess.java

@PlanningEntity(...)

public class CloudProcess ... {

 private int requiredCpuPower;

 private int requiredMemory;

 private int requiredNetworkBandwidth;

 private CloudComputer computer;

 ... // getters

 @PlanningVariable(...)

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = "computerList")

 public CloudComputer getComputer() {

 return computer;

 }

 public void setComputer(CloudComputer computer) {

 computer = computer;

 }

 // **

 // Complex methods

 // **

 ...

}

The values that Planner can choose from for the field computer, are retrieved from a method

on the Solution implementation: CloudBalance.getComputerList() which returns a list of all

computers in the current data set. We tell Planner about this by using the annotation @ValueRange.

Domain model implementation

19

2.1.6.3. The class CloudBalance

The class CloudBalance implements the Solution interface. It holds a list of all computers and

processes. We need to tell Planner how to retrieve the collection of process which it can change,

so we need to annotate the getter getProcessList with @PlanningEntityCollectionProperty.

The CloudBalance class also has a property score which is the Score of that Solution instance

in it's current state:

Example 2.5. CloudBalance.java

public class CloudBalance ... implements Solution<HardSoftScore> {

 private List<CloudComputer> computerList;

 private List<CloudProcess> processList;

 private HardSoftScore score;

 public List<CloudComputer> getComputerList() {

 return computerList;

 }

 @PlanningEntityCollectionProperty

 public List<CloudProcess> getProcessList() {

 return processList;

 }

 ...

 public HardSoftScore getScore() {

 return score;

 }

 public void setScore(HardSoftScore score) {

 this.score = score;

 }

 // **

 // Complex methods

 // **

 public Collection<? extends Object> getProblemFacts() {

 List<Object> facts = new ArrayList<Object>();

 facts.addAll(computerList);

 // Do not add the planning entity's (processList) because that will

 be done automatically

 return facts;

Chapter 2. Quick start

20

 }

 ...

}

The method getProblemFacts() is only needed for score calculation with Drools. It's not needed

for the other score calculation types.

2.1.7. Score configuration

Planner will search for the Solution with the highest Score. We're using a HardSoftScore,

which means Planner will look for the solution with no hard constraints broken (fulfill hardware

requirements) and as little as possible soft constraints broken (minimize maintenance cost).

Of course, Planner needs to be told about these domain-specific score constraints. There are

several ways to implement such a score function:

• Simple Java

Score configuration

21

• Incremental Java

• Drools

Let's take a look at 2 different implementations:

2.1.7.1. Simple Java score configuration

One way to define a score function is to implement the interface SimpleScoreCalculator in plain

Java.

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>

 <simpleScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.solver.score.CloudBalancingSimpleScoreCalculator</

simpleScoreCalculatorClass>

 </scoreDirectorFactory>

Just implement the method calculateScore(Solution) to return a HardSoftScore instance.

Example 2.6. CloudBalancingSimpleScoreCalculator.java

public class CloudBalancingSimpleScoreCalculator implements SimpleScoreCalculator<CloudBalance> {

 /**

 * A very simple implementation. The double loop can easily be removed by using Maps as shown in

 * {@link CloudBalancingMapBasedSimpleScoreCalculator#calculateScore(CloudBalance)}.

 */

 public HardSoftScore calculateScore(CloudBalance cloudBalance) {

 int hardScore = 0;

 int softScore = 0;

 for (CloudComputer computer : cloudBalance.getComputerList()) {

 int cpuPowerUsage = 0;

 int memoryUsage = 0;

 int networkBandwidthUsage = 0;

 boolean used = false;

 // Calculate usage

 for (CloudProcess process : cloudBalance.getProcessList()) {

 if (computer.equals(process.getComputer())) {

 cpuPowerUsage += process.getRequiredCpuPower();

 memoryUsage += process.getRequiredMemory();

 networkBandwidthUsage += process.getRequiredNetworkBandwidth();

 used = true;

 }

 }

Chapter 2. Quick start

22

 // Hard constraints

 int cpuPowerAvailable = computer.getCpuPower() - cpuPowerUsage;

 if (cpuPowerAvailable < 0) {

 hardScore += cpuPowerAvailable;

 }

 int memoryAvailable = computer.getMemory() - memoryUsage;

 if (memoryAvailable < 0) {

 hardScore += memoryAvailable;

 }

 int networkBandwidthAvailable = computer.getNetworkBandwidth() - networkBandwidthUsage;

 if (networkBandwidthAvailable < 0) {

 hardScore += networkBandwidthAvailable;

 }

 // Soft constraints

 if (used) {

 softScore -= computer.getCost();

 }

 }

 return HardSoftScore.valueOf(hardScore, softScore);

 }

}

Even if we optimize the code above to use Maps to iterate through the processList only once,

it is still slow because it doesn't do incremental score calculation. To fix that, either use an

incremental Java score function or a Drools score function. Let's take a look at the latter.

2.1.7.2. Drools score configuration

To use the Drools rule engine as a score function, simply add a scoreDrl resource in the

classpath:

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>

 <scoreDrl>/org/optaplanner/examples/cloudbalancing/solver/

cloudBalancingScoreRules.drl</scoreDrl>

 </scoreDirectorFactory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth

to support all their processes, so we make these hard constraints:

Example 2.7. cloudBalancingScoreRules.drl - hard constraints

...

Score configuration

23

import org.optaplanner.examples.cloudbalancing.domain.CloudBalance;

import org.optaplanner.examples.cloudbalancing.domain.CloudComputer;

import org.optaplanner.examples.cloudbalancing.domain.CloudProcess;

global HardSoftScoreHolder scoreHolder;

// ##

// Hard constraints

// ##

rule "requiredCpuPowerTotal"

 when

 $computer : CloudComputer($cpuPower : cpuPower)

 $requiredCpuPowerTotal : Number(intValue > $cpuPower) from accumulate(

 CloudProcess(

 computer == $computer,

 $requiredCpuPower : requiredCpuPower),

 sum($requiredCpuPower)

)

 then

 scoreHolder.addHardConstraintMatch(kcontext, $cpuPower -

 $requiredCpuPowerTotal.intValue());

end

rule "requiredMemoryTotal"

 ...

end

rule "requiredNetworkBandwidthTotal"

 ...

end

Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as

a soft constraint:

Example 2.8. cloudBalancingScoreRules.drl - soft constraints

// ##

// Soft constraints

// ##

rule "computerCost"

 when

 $computer : CloudComputer($cost : cost)

 exists CloudProcess(computer == $computer)

 then

Chapter 2. Quick start

24

 scoreHolder.addSoftConstraintMatch(kcontext, - $cost);

end

If you use the Drools rule engine for score calculation, you can integrate with other Drools

technologies, such as decision tables (XLS or web based), the Guvnor rule repository, ...

2.1.8. Beyond this tutorial

Now that this simple example works, try going further. Enrich the domain model and add extra

constraints such as these:

• Each Process belongs to a Service. A computer can crash, so processes running the same

service should be assigned to different computers.

• Each Computer is located in a Building. A building can burn down, so processes of the same

services should be assigned to computers in different buildings.

Chapter 3.

25

Chapter 3. Use cases and examples

3.1. Examples overview

OptaPlanner has several examples. In this manual we explain OptaPlanner mainly using the n

queens example. So it's advisable to read at least the section about that example.

The source code of all these examples is available in the distribution zip under examples/sources

and also in git under optaplanner/optaplanner-examples.

Table 3.1. Examples overview

Example Domain Entity

size

Value

size

Search

space

Competition?

N queens • 1 entity class

• 1 variable

<= 256 <= 256 <=

10^616

Pointless

Cloud balancing • 1 entity class

• 1 variable

<= 2400 <= 800 <=

10^6967

No

Traveling

salesman

• 1 entity class

• 1 chained

variable

<= 980 <= 980 <=

10^2927

Unrealistic

Manners 2009 • 1 entity class

• 1 variable

<= 144 <= 144 <=

10^310

Unrealistic

Course timetabling • 1 entity class

• 2 variables

<= 434 <= 25

and <=

20

<=

10^1171

Realistic

Machine

reassignment

• 1 entity class

• 1 variable

<=

50000

<= 5000 <=

10^184948

Realistic

Vehicle routing • 1 entity class

• 1 chained

variable

<= 134 <= 144 <=

10^285

Unrealistic

Hospital bed

planning

• 1 entity class

• 1 variable

<= 2750 <= 471 <=

10^6851

Realistic

Exam timetabling • 1 entity class

• 2 variables

<= 1096 <= 80

and <=

49

<=

10^3374

Realistic

Chapter 3. Use cases and examples

26

Example Domain Entity

size

Value

size

Search

space

Competition?

Employee rostering • 1 entity class

• 1 variable

<= 752 <= 50 <=

10^1277

Realistic

Sport scheduling • 1 entity class

• 1 variable

<= 1560 <= 78 <=

10^2951

Unrealistic

A realistic competition is an official, independent competition:

• that clearly defines a real-word use case

• with real-world constraints

• with multiple, real-world datasets

• that expects reproducible results within a specific time limit on specific hardware

• that has had serious participation from the academic and/or enterprise Operations Research

community

These realistic competitions provide an objective comparison of Planner with competitive software

and academic research.

3.2. Basic examples

3.2.1. N queens

3.2.1.1. Problem statement

Place n queens on a n sized chessboard so no 2 queens can attach each other. The most common

n queens puzzle is the 8 queens puzzle, with n = 8:

N queens

27

Constraints:

• Use a chessboard of n columns and n rows.

• Place n queens on the chessboard.

• No 2 queens can attack each other. A queen can attack any other queen on the same horizontal,

vertical or diagonal line.

This documentation heavily uses the 4 queens puzzle as the primary example.

A proposed solution could be:

Chapter 3. Use cases and examples

28

Figure 3.1. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens A1 and B0 can attack each other (so can queens B0

and D0). Removing queen B0 would respect the "no 2 queens can attack each other" constraint,

but would break the "place n queens" constraint.

Below is a correct solution:

Figure 3.2. A correct solution for the 4 queens puzzle

All the constraints have been met, so the solution is correct. Note that most n queens puzzles

have multiple correct solutions. We'll focus on finding a single correct solution for a given n, not

on finding the number of possible correct solutions for a given n.

3.2.1.2. Problem size

4 has 4 queens with a search space of 256.

8 has 8 queens with a search space of 10^7.

16 has 16 queens with a search space of 10^19.

32 has 32 queens with a search space of 10^48.

64 has 64 queens with a search space of 10^115.

256 has 256 queens with a search space of 10^616.

The OptaPlanner implementation of the N queens example has not been optimized because

it functions as a beginner example. Nevertheless, it can easily handle 64 queens. With a few

changes it has been shown to easily handle 5000 queens and more.

N queens

29

3.2.1.3. Domain model

Use a good domain model: it will be easier to understand and solve your planning problem. This

is the domain model for the n queens example:

public class Column {

 private int index;

 // ... getters and setters

}

public class Row {

 private int index;

 // ... getters and setters

}

public class Queen {

 private Column column;

 private Row row;

 public int getAscendingDiagonalIndex() {...}

 public int getDescendingDiagonalIndex() {...}

 // ... getters and setters

}

A Queen instance has a Column (for example: 0 is column A, 1 is column B, ...) and a Row (its row,

for example: 0 is row 0, 1 is row 1, ...). Based on the column and the row, the ascending diagonal

line as well as the descending diagonal line can be calculated. The column and row indexes start

from the upper left corner of the chessboard.

public class NQueens implements Solution<SimpleScore> {

 private int n;

 private List<Column> columnList;

 private List<Row> rowList;

 private List<Queen> queenList;

Chapter 3. Use cases and examples

30

 private SimpleScore score;

 // ... getters and setters

}

A single NQueens instance contains a list of all Queen instances. It is the Solution implementation

which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens

example, NQueens's getN() method will always return 4.

Table 3.2. A solution for 4 queens shown in the domain model

A solution Queen columnIndex rowIndex ascendingDiagonalIndex

(columnIndex

+ rowIndex)

descendingDiagonalIndex

(columnIndex

- rowIndex)

A1 0 1 1 (**) -1

B0 1 0 (*) 1 (**) 1

C2 2 2 4 0

D0 3 0 (*) 3 3

When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack

each other.

3.2.2. Cloud balancing

This example is explained in a tutorial.

3.2.3. Traveling salesman (TSP - Traveling salesman problem)

3.2.3.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia [http://en.wikipedia.org/wiki/Travelling_salesman_problem].

It is one of the most intensively studied problems [http://www.tsp.gatech.edu/] in computational

mathematics. Yet, in the real world, it's often only part of a planning problem, along with other

constraints, such as employee shift rostering constraints.

3.2.3.2. Problem size

dj38 has 38 cities with a search space of 10^58.

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.tsp.gatech.edu/
http://www.tsp.gatech.edu/

Manners 2009

31

europe40 has 40 cities with a search space of 10^62.

st70 has 70 cities with a search space of 10^126.

pcb442 has 442 cities with a search space of 10^1166.

lu980 has 980 cities with a search space of 10^2927.

3.2.4. Manners 2009

3.2.4.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

• This time she invited 144 guests and prepared 12 round tables with 12 seats each.

• Every guest should sit next to someone (left and right) of the opposite gender.

• And that neighbour should have at least one hobby in common with the guest.

• Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers

and 2 programmers at each table.

• And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

Drools Expert also has the normal miss Manners examples (which is much smaller) and employs

a brute force heuristic to solve it. OptaPlanner's implementation is far more scalable because it

uses heuristics to find the best solution and Drools Expert to calculate the score of each solution.

3.2.4.2. Problem size

geoffrey1 has 18 jobs, 144 guests, 288 hobby practicians, 12 tables

 and 144 seats with a search space of 10^310.

james1WithGenderChange has 18 jobs, 144 guests, 432 hobby practicians, 12 tables

 and 144 seats with a search space of 10^310.

3.3. Real examples

3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course

scheduling)

3.3.1.1. Problem statement

Schedule each lecture into a timeslot and into a room.

Hard constraints:

• Teacher conflict: A teacher must not have 2 lectures in the same period.

Chapter 3. Use cases and examples

32

• Curriculum conflict: A curriculum must not have 2 lectures in the same period.

• Room occupancy: 2 lectures must not be in the same room in the same period.

• Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific

period.

Soft constraints:

• Room capacity: A room's capacity should not be less than the number of students in its lecture.

• Minimum working days: Lectures of the same course should be spread into a minimum number

of days.

• Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to

each other (so in consecutive periods).

• Room stability: Lectures of the same course should be assigned the same room.

The problem is defined by the International Timetabling Competition 2007 track 3 [http://

www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm].

3.3.1.2. Problem size

comp01 has 24 teachers, 14 curricula, 30 courses, 160 lectures, 30 periods, 6

 rooms and 53 unavailable period constraints with a search space of 10^360.

comp02 has 71 teachers, 70 curricula, 82 courses, 283 lectures, 25 periods, 16

 rooms and 513 unavailable period constraints with a search space of 10^736.

comp03 has 61 teachers, 68 curricula, 72 courses, 251 lectures, 25 periods, 16

 rooms and 382 unavailable period constraints with a search space of 10^653.

comp04 has 70 teachers, 57 curricula, 79 courses, 286 lectures, 25 periods, 18

 rooms and 396 unavailable period constraints with a search space of 10^758.

comp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9

 rooms and 771 unavailable period constraints with a search space of 10^381.

comp06 has 87 teachers, 70 curricula, 108 courses, 361 lectures, 25 periods, 18

 rooms and 632 unavailable period constraints with a search space of 10^957.

comp07 has 99 teachers, 77 curricula, 131 courses, 434 lectures, 25 periods, 20

 rooms and 667 unavailable period constraints with a search space of 10^1171.

comp08 has 76 teachers, 61 curricula, 86 courses, 324 lectures, 25 periods, 18

 rooms and 478 unavailable period constraints with a search space of 10^859.

comp09 has 68 teachers, 75 curricula, 76 courses, 279 lectures, 25 periods, 18

 rooms and 405 unavailable period constraints with a search space of 10^740.

comp10 has 88 teachers, 67 curricula, 115 courses, 370 lectures, 25 periods, 18

 rooms and 694 unavailable period constraints with a search space of 10^981.

comp11 has 24 teachers, 13 curricula, 30 courses, 162 lectures, 45 periods, 5

 rooms and 94 unavailable period constraints with a search space of 10^381.

comp12 has 74 teachers, 150 curricula, 88 courses, 218 lectures, 36 periods, 11

 rooms and 1368 unavailable period constraints with a search space of 10^566.

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Machine reassignment (Google ROADEF 2012)

33

comp13 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19

 rooms and 468 unavailable period constraints with a search space of 10^824.

comp14 has 68 teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17

 rooms and 486 unavailable period constraints with a search space of 10^722.

3.3.1.3. Domain model

3.3.2. Machine reassignment (Google ROADEF 2012)

3.3.2.1. Problem statement

Assign each process to a machine. All processes already have an original (unoptimized)

assignment. Each process requires an amount of each resource (such as CPU, RAM, ...). This is

more complex version of the Cloud Balancing example.

Hard constraints:

• Maximum capacity: The maximum capacity for each resource for each machine must not be

exceeded.

Chapter 3. Use cases and examples

34

• Conflict: Processes of the same service must run on distinct machines.

• Spread: Processes of the same service must be spread across locations.

• Dependency: The processes of a service depending on another service must run in the

neighborhood of a process of the other service.

• Transient usage: Some resources are transient and count towards the maximum capacity of

both the original machine as the newly assigned machine.

Soft constraints:

• Load: The safety capacity for each resource for each machine should not be exceeded.

• Balance: Leave room for future assignments by balancing the available resources on each

machine.

• Process move cost: A process has a move cost.

• Service move cost: A service has a move cost.

• Machine move cost: Moving a process from machine A to machine B has another A-B specific

move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012 [http://

challenge.roadef.org/2012/en/].

3.3.2.2. Problem size

model_a1_1 has 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79

 services, 100 processes and 1 balancePenalties with a search space of 10^60.

model_a1_2 has 4 resources, 2 neighborhoods, 4 locations, 100 machines,

 980 services, 1000 processes and 0 balancePenalties with a search space

 of 10^2000.

model_a1_3 has 3 resources, 5 neighborhoods, 25 locations, 100 machines,

 216 services, 1000 processes and 0 balancePenalties with a search space

 of 10^2000.

model_a1_4 has 3 resources, 50 neighborhoods, 50 locations, 50 machines,

 142 services, 1000 processes and 1 balancePenalties with a search space

 of 10^1698.

model_a1_5 has 4 resources, 2 neighborhoods, 4 locations, 12 machines,

 981 services, 1000 processes and 1 balancePenalties with a search space

 of 10^1079.

model_a2_1 has 3 resources, 1 neighborhoods, 1 locations, 100 machines,

 1000 services, 1000 processes and 0 balancePenalties with a search space

 of 10^2000.

model_a2_2 has 12 resources, 5 neighborhoods, 25 locations, 100 machines,

 170 services, 1000 processes and 0 balancePenalties with a search space

 of 10^2000.

http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/
http://challenge.roadef.org/2012/en/

Vehicle routing

35

model_a2_3 has 12 resources, 5 neighborhoods, 25 locations, 100 machines,

 129 services, 1000 processes and 0 balancePenalties with a search space

 of 10^2000.

model_a2_4 has 12 resources, 5 neighborhoods, 25 locations, 50 machines,

 180 services, 1000 processes and 1 balancePenalties with a search space

 of 10^1698.

model_a2_5 has 12 resources, 5 neighborhoods, 25 locations, 50 machines,

 153 services, 1000 processes and 0 balancePenalties with a search space

 of 10^1698.

model_b_1 has 12 resources, 5 neighborhoods, 10 locations, 100 machines,

 2512 services, 5000 processes and 0 balancePenalties with a search space

 of 10^10000.

model_b_2 has 12 resources, 5 neighborhoods, 10 locations, 100 machines,

 2462 services, 5000 processes and 1 balancePenalties with a search space

 of 10^10000.

model_b_3 has 6 resources, 5 neighborhoods, 10 locations, 100 machines,

 15025 services, 20000 processes and 0 balancePenalties with a search space of

 10^40000.

model_b_4 has 6 resources, 5 neighborhoods, 50 locations, 500 machines,

 1732 services, 20000 processes and 1 balancePenalties with a search space of

 10^53979.

model_b_5 has 6 resources, 5 neighborhoods, 10 locations, 100 machines,

 35082 services, 40000 processes and 0 balancePenalties with a search space of

 10^80000.

model_b_6 has 6 resources, 5 neighborhoods, 50 locations, 200 machines,

 14680 services, 40000 processes and 1 balancePenalties with a search space of

 10^92041.

model_b_7 has 6 resources, 5 neighborhoods, 50 locations, 4000 machines,

 15050 services, 40000 processes and 1 balancePenalties with a search space of

 10^144082.

model_b_8 has 3 resources, 5 neighborhoods, 10 locations, 100 machines,

 45030 services, 50000 processes and 0 balancePenalties with a search space of

 10^100000.

model_b_9 has 3 resources, 5 neighborhoods, 100 locations, 1000 machines,

 4609 services, 50000 processes and 1 balancePenalties with a search space of

 10^150000.

model_b_10 has 3 resources, 5 neighborhoods, 100 locations, 5000 machines,

 4896 services, 50000 processes and 1 balancePenalties with a search space of

 10^184948.

3.3.3. Vehicle routing

3.3.3.1. Problem statement

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each

vehicle can service multiple customers, but it has a limited capacity.

Chapter 3. Use cases and examples

36

The capacitated vehicle routing problem (CRVP) is defined by the VRP web [http://neo.lcc.uma.es/

vrp/].

3.3.3.2. Problem size

A-n32-k5 has 1 depots, 5 vehicles and 31 customers with a search space of 10^46.

A-n33-k5 has 1 depots, 5 vehicles and 32 customers with a search space of 10^48.

A-n33-k6 has 1 depots, 6 vehicles and 32 customers with a search space of 10^48.

A-n34-k5 has 1 depots, 5 vehicles and 33 customers with a search space of 10^50.

A-n36-k5 has 1 depots, 5 vehicles and 35 customers with a search space of 10^54.

A-n37-k5 has 1 depots, 5 vehicles and 36 customers with a search space of 10^56.

A-n37-k6 has 1 depots, 6 vehicles and 36 customers with a search space of 10^56.

A-n38-k5 has 1 depots, 5 vehicles and 37 customers with a search space of 10^58.

A-n39-k5 has 1 depots, 5 vehicles and 38 customers with a search space of 10^60.

A-n39-k6 has 1 depots, 6 vehicles and 38 customers with a search space of 10^60.

A-n44-k7 has 1 depots, 7 vehicles and 43 customers with a search space of 10^70.

A-n45-k6 has 1 depots, 6 vehicles and 44 customers with a search space of 10^72.

A-n45-k7 has 1 depots, 7 vehicles and 44 customers with a search space of 10^72.

A-n46-k7 has 1 depots, 7 vehicles and 45 customers with a search space of 10^74.

A-n48-k7 has 1 depots, 7 vehicles and 47 customers with a search space of 10^78.

http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/
http://neo.lcc.uma.es/vrp/

Hospital bed planning (PAS - Patient admission scheduling)

37

A-n53-k7 has 1 depots, 7 vehicles and 52 customers with a search space of 10^89.

A-n54-k7 has 1 depots, 7 vehicles and 53 customers with a search space of 10^91.

A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a search space of 10^93.

A-n60-k9 has 1 depots, 9 vehicles and 59 customers with a search space of

 10^104.

A-n61-k9 has 1 depots, 9 vehicles and 60 customers with a search space of

 10^106.

A-n62-k8 has 1 depots, 8 vehicles and 61 customers with a search space of

 10^108.

A-n63-k10 has 1 depots, 10 vehicles and 62 customers with a search space of

 10^111.

A-n63-k9 has 1 depots, 9 vehicles and 62 customers with a search space of

 10^111.

A-n64-k9 has 1 depots, 9 vehicles and 63 customers with a search space of

 10^113.

A-n65-k9 has 1 depots, 9 vehicles and 64 customers with a search space of

 10^115.

A-n69-k9 has 1 depots, 9 vehicles and 68 customers with a search space of

 10^124.

A-n80-k10 has 1 depots, 10 vehicles and 79 customers with a search space of

 10^149.

F-n135-k7 has 1 depots, 7 vehicles and 134 customers with a search space of

 10^285.

F-n45-k4 has 1 depots, 4 vehicles and 44 customers with a search space of 10^72.

F-n72-k4 has 1 depots, 4 vehicles and 71 customers with a search space of

 10^131.

3.3.4. Hospital bed planning (PAS - Patient admission

scheduling)

3.3.4.1. Problem statement

Assign each patient (that will come to the hospital) into a bed for each night that the patient will

stay in the hospital. Each bed belongs to a room and each room belongs to a department. The

arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

Chapter 3. Use cases and examples

38

Hard constraints:

• 2 patients must not be assigned to the same bed in the same night.

• A room can have a gender limitation: only females, only males, the same gender in the same

night or no gender limitation at all.

• A department can have a minimum or maximum age.

• A patient can require a room with specific equipment(s).

Soft constraints:

• A patient can prefer a maximum room size, for example if he/she want a single room.

• A patient is best assigned to a department that specializes in his/her problem.

• A patient is best assigned to a room that specializes in his/her problem.

• A patient can prefer a room with specific equipment(s).

Difficult examples

39

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data

comes from real world hospitals.

3.3.4.2. Problem size

testdata01 has 4 specialisms, 2 equipments, 4 departments, 98 rooms, 286 beds,

 14 nights, 652 patients and 652 admissions with a search space of 10^1601.

testdata02 has 6 specialisms, 2 equipments, 6 departments, 151 rooms, 465 beds,

 14 nights, 755 patients and 755 admissions with a search space of 10^2013.

testdata03 has 5 specialisms, 2 equipments, 5 departments, 131 rooms, 395 beds,

 14 nights, 708 patients and 708 admissions with a search space of 10^1838.

testdata04 has 6 specialisms, 2 equipments, 6 departments, 155 rooms, 471 beds,

 14 nights, 746 patients and 746 admissions with a search space of 10^1994.

testdata05 has 4 specialisms, 2 equipments, 4 departments, 102 rooms, 325 beds,

 14 nights, 587 patients and 587 admissions with a search space of 10^1474.

testdata06 has 4 specialisms, 2 equipments, 4 departments, 104 rooms, 313 beds,

 14 nights, 685 patients and 685 admissions with a search space of 10^1709.

testdata07 has 6 specialisms, 4 equipments, 6 departments, 162 rooms, 472 beds,

 14 nights, 519 patients and 519 admissions with a search space of 10^1387.

testdata08 has 6 specialisms, 4 equipments, 6 departments, 148 rooms, 441 beds,

 21 nights, 895 patients and 895 admissions with a search space of 10^2366.

testdata09 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds,

 28 nights, 1400 patients and 1400 admissions with a search space of 10^3487.

testdata10 has 4 specialisms, 4 equipments, 4 departments, 104 rooms, 308 beds,

 56 nights, 1575 patients and 1575 admissions with a search space of 10^3919.

testdata11 has 4 specialisms, 4 equipments, 4 departments, 107 rooms, 318 beds,

 91 nights, 2514 patients and 2514 admissions with a search space of 10^6291.

testdata12 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds,

 84 nights, 2750 patients and 2750 admissions with a search space of 10^6851.

testdata13 has 5 specialisms, 4 equipments, 5 departments, 125 rooms, 368 beds,

 28 nights, 907 patients and 1109 admissions with a search space of 10^2845.

3.4. Difficult examples

3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)

3.4.1.1. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room

during the same period.

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/

Chapter 3. Use cases and examples

40

Hard constraints:

• Exam conflict: 2 exams that share students must not occur in the same period.

• Room capacity: A room's seating capacity must suffice at all times.

• Period duration: A period's duration must suffice for all of its exams.

• Period related hard constraints (specified per dataset):

• Coincidence: 2 specified exams must use the same period (but possibly another room).

• Exclusion: 2 specified exams must not use the same period.

• After: A specified exam must occur in a period after another specified exam's period.

• Room related hard constraints (specified per dataset):

• Exclusive: 1 specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

Exam timetabling (ITC 2007 track 1 - Examination)

41

• The same student should not have 2 exams in a row.

• The same student should not have 2 exams on the same day.

• Period spread: 2 exams that share students should be a number of periods apart.

• Mixed durations: 2 exams that share a room should not have different durations.

• Front load: Large exams should be scheduled earlier in the schedule.

• Period penalty (specified per dataset): Some periods have a penalty when used.

• Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 [http://

www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm]. Geoffrey De Smet finished 4th in

that competition with a very early version of OptaPlanner. Many improvements have been made

since then.

3.4.1.2. Problem size

exam_comp_set1 has 7883 students, 607 exams, 54 periods, 7 rooms, 12 period

 constraints and 0 room constraints with a search space of 10^1564.

exam_comp_set2 has 12484 students, 870 exams, 40 periods, 49 rooms, 12 period

 constraints and 2 room constraints with a search space of 10^2864.

exam_comp_set3 has 16365 students, 934 exams, 36 periods, 48 rooms, 168 period

 constraints and 15 room constraints with a search space of 10^3023.

exam_comp_set4 has 4421 students, 273 exams, 21 periods, 1 rooms, 40 period

 constraints and 0 room constraints with a search space of 10^360.

exam_comp_set5 has 8719 students, 1018 exams, 42 periods, 3 rooms, 27 period

 constraints and 0 room constraints with a search space of 10^2138.

exam_comp_set6 has 7909 students, 242 exams, 16 periods, 8 rooms, 22 period

 constraints and 0 room constraints with a search space of 10^509.

exam_comp_set7 has 13795 students, 1096 exams, 80 periods, 15 rooms, 28 period

 constraints and 0 room constraints with a search space of 10^3374.

exam_comp_set8 has 7718 students, 598 exams, 80 periods, 8 rooms, 20 period

 constraints and 1 room constraints with a search space of 10^1678.

3.4.1.3. Domain model

Below you can see the main examination domain classes:

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Chapter 3. Use cases and examples

42

Figure 3.3. Examination domain class diagram

Notice that we've split up the exam concept into an Exam class and a Topic class. The Exam

instances change during solving (this is the planning entity class), when their period or room

property changes. The Topic, Period and Room instances never change during solving (these

are problem facts, just like some other classes).

Employee rostering (INRC 2010 - Nurse rostering)

43

3.4.2. Employee rostering (INRC 2010 - Nurse rostering)

3.4.2.1. Problem statement

For each shift, assign a nurse to work that shift.

Chapter 3. Use cases and examples

44

Employee rostering (INRC 2010 - Nurse rostering)

45

The problem is defined by the International Nurse Rostering Competition 2010 [http://

www.kuleuven-kortrijk.be/nrpcompetition].

3.4.2.2. Problem size

There are 3 dataset types:

• sprint: must be solved in seconds.

• medium: must be solved in minutes.

• long: must be solved in hours.

toy1 has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 employees, 7

 shiftDates, 35 shiftAssignments and 0 requests with a search space of 10^27.

toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 employees, 28

 shiftDates, 180 shiftAssignments and 140 requests with a search space of 10^234.

sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

Chapter 3. Use cases and examples

46

sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28

 shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

sprint_hint01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

sprint_late01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 employees,

 28 shiftDates, 144 shiftAssignments and 139 requests with a search space of

 10^144.

sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees,

 28 shiftDates, 160 shiftAssignments and 150 requests with a search space of

 10^160.

sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees,

 28 shiftDates, 160 shiftAssignments and 150 requests with a search space of

 10^160.

sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

sprint_late06 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

Employee rostering (INRC 2010 - Nurse rostering)

47

sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 0 requests with a search space of

 10^152.

sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 0 requests with a search space of

 10^152.

sprint_late10 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees,

 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of

 10^152.

medium01 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28

 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.

medium02 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28

 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.

medium03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28

 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.

medium04 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28

 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.

medium05 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28

 shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.

medium_hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees,

 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of

 10^632.

medium_hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees,

 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of

 10^632.

medium_hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees,

 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of

 10^632.

medium_late01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees,

 28 shiftDates, 424 shiftAssignments and 390 requests with a search space of

 10^626.

medium_late02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees,

 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of

 10^632.

medium_late03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 employees,

 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of

 10^632.

medium_late04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees,

 28 shiftDates, 416 shiftAssignments and 390 requests with a search space of

 10^614.

medium_late05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 employees,

 28 shiftDates, 452 shiftAssignments and 390 requests with a search space of

 10^667.

long01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees,

 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of

 10^1250.

Chapter 3. Use cases and examples

48

long02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees,

 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of

 10^1250.

long03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees,

 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of

 10^1250.

long04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees,

 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of

 10^1250.

long05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees,

 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of

 10^1250.

long_hint01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees,

 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of

 10^1257.

long_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees,

 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of

 10^1257.

long_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees,

 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of

 10^1257.

long_late01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees,

 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of

 10^1277.

long_late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees,

 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of

 10^1277.

long_late03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees,

 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of

 10^1277.

long_late04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees,

 28 shiftDates, 752 shiftAssignments and 0 requests with a search space of

 10^1277.

long_late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees,

 28 shiftDates, 740 shiftAssignments and 0 requests with a search space of

 10^1257.

3.4.3. Sport scheduling (TTP - Traveling tournament problem)

3.4.3.1. Problem statement

Schedule matches between n teams.

Sport scheduling (TTP - Traveling tournament problem)

49

Hard constraints:

• Each team plays twice against every other team: once home and once away.

• Each team has exactly 1 match on each timeslot.

• No team must have more than 3 consecutive home or 3 consecutive away matches.

• No repeaters: no 2 consecutive matches of the same 2 opposing teams.

Soft constraints:

• Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick's website (which contains the world records too) [http://

mat.gsia.cmu.edu/TOURN/].

3.4.3.2. Problem size

1-nl04 has 6 days, 4 teams and 12 matches with a search space of 10^9.

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Chapter 3. Use cases and examples

50

1-nl06 has 10 days, 6 teams and 30 matches with a search space of 10^30.

1-nl08 has 14 days, 8 teams and 56 matches with a search space of 10^64.

1-nl10 has 18 days, 10 teams and 90 matches with a search space of 10^112.

1-nl12 has 22 days, 12 teams and 132 matches with a search space of 10^177.

1-nl14 has 26 days, 14 teams and 182 matches with a search space of 10^257.

1-nl16 has 30 days, 16 teams and 240 matches with a search space of 10^354.

2-bra24 has 46 days, 24 teams and 552 matches with a search space of 10^917.

3-nfl16 has 30 days, 16 teams and 240 matches with a search space of 10^354.

3-nfl18 has 34 days, 18 teams and 306 matches with a search space of 10^468.

3-nfl20 has 38 days, 20 teams and 380 matches with a search space of 10^600.

3-nfl22 has 42 days, 22 teams and 462 matches with a search space of 10^749.

3-nfl24 has 46 days, 24 teams and 552 matches with a search space of 10^917.

3-nfl26 has 50 days, 26 teams and 650 matches with a search space of 10^1104.

3-nfl28 has 54 days, 28 teams and 756 matches with a search space of 10^1309.

3-nfl30 has 58 days, 30 teams and 870 matches with a search space of 10^1534.

3-nfl32 has 62 days, 32 teams and 992 matches with a search space of 10^1778.

4-super04 has 6 days, 4 teams and 12 matches with a search space of 10^9.

4-super06 has 10 days, 6 teams and 30 matches with a search space of 10^30.

4-super08 has 14 days, 8 teams and 56 matches with a search space of 10^64.

4-super10 has 18 days, 10 teams and 90 matches with a search space of 10^112.

4-super12 has 22 days, 12 teams and 132 matches with a search space of 10^177.

4-super14 has 26 days, 14 teams and 182 matches with a search space of 10^257.

5-galaxy04 has 6 days, 4 teams and 12 matches with a search space of 10^9.

5-galaxy06 has 10 days, 6 teams and 30 matches with a search space of 10^30.

5-galaxy08 has 14 days, 8 teams and 56 matches with a search space of 10^64.

5-galaxy10 has 18 days, 10 teams and 90 matches with a search space of 10^112.

5-galaxy12 has 22 days, 12 teams and 132 matches with a search space of 10^177.

5-galaxy14 has 26 days, 14 teams and 182 matches with a search space of 10^257.

5-galaxy16 has 30 days, 16 teams and 240 matches with a search space of 10^354.

5-galaxy18 has 34 days, 18 teams and 306 matches with a search space of 10^468.

5-galaxy20 has 38 days, 20 teams and 380 matches with a search space of 10^600.

5-galaxy22 has 42 days, 22 teams and 462 matches with a search space of 10^749.

5-galaxy24 has 46 days, 24 teams and 552 matches with a search space of 10^917.

5-galaxy26 has 50 days, 26 teams and 650 matches with a search space of 10^1104.

5-galaxy28 has 54 days, 28 teams and 756 matches with a search space of 10^1309.

5-galaxy30 has 58 days, 30 teams and 870 matches with a search space of 10^1534.

5-galaxy32 has 62 days, 32 teams and 992 matches with a search space of 10^1778.

5-galaxy34 has 66 days, 34 teams and 1122 matches with a search space of 10^2041.

5-galaxy36 has 70 days, 36 teams and 1260 matches with a search space of 10^2324.

5-galaxy38 has 74 days, 38 teams and 1406 matches with a search space of 10^2628.

5-galaxy40 has 78 days, 40 teams and 1560 matches with a search space of 10^2951.

Chapter 4.

51

Chapter 4. Planner configuration

4.1. Overview

Solving a planning problem with OptaPlanner consists out of 5 steps:

1. Model your planning problem as a class that implements the interface Solution, for example

the class NQueens.

2. Configure a Solver, for example a first fit and tabu search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a 4 Queens instance. Set it as the

planning problem on the Solver with Solver.setPlanningProblem(...).

4. Solve it with Solver.solve().

5. Get the best solution found by the Solver with Solver.getBestSolution().

Chapter 4. Planner configuration

52

4.2. Solver configuration

4.2.1. Solver configuration by XML file

You can build a Solver instance with the XmlSolverFactory. Configure it with a solver

configuration XML file:

 XmlSolverFactory solverFactory = new XmlSolverFactory(

 "/org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");

 Solver solver = solverFactory.buildSolver();

A solver configuration file looks something like this:

<?xml version="1.0" encoding="UTF-8"?>

<solver>

 <!-- Define the model -->

 <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</

solutionClass>

 <planningEntityClass>org.optaplanner.examples.nqueens.domain.Queen</

planningEntityClass>

 <!-- Define the score function -->

 <scoreDirectorFactory>

 <scoreDefinitionType>SIMPLE</scoreDefinitionType>

 <scoreDrl>/org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</

scoreDrl>

 </scoreDirectorFactory>

 <!-- Configure the optimization algorithm(s) -->

 <termination>

 ...

 </termination>

 <constructionHeuristic>

 ...

 </constructionHeuristic>

 <localSearch>

 ...

 </localSearch>

</solver>

Notice the 3 parts in it:

• Define the model

• Define the score function

Solver configuration by Java API

53

• Configure the optimization algorithm(s)

We'll explain these various parts of a configuration later in this manual.

OptaPlanner makes it relatively easy to switch optimization algorithm(s) just by changing

the configuration. There's even a Benchmark utility which allows you to play out different

configurations against each other and report the most appropriate configuration for your problem.

You could for example play out tabu search versus simulated annealing, on 4 queens and 64

queens.

4.2.2. Solver configuration by Java API

As an alternative to the XML file, a solver configuration can also be configured with the

SolverConfig API:

 SolverConfig solverConfig = new SolverConfig();

 solverConfig.setSolutionClass(NQueens.class);

 solverConfig.setPlanningEntityClassSet(Collections.<Class<?>>singleton(Queen.class));

 ScoreDirectorFactoryConfig scoreDirectorFactoryConfig = new ScoreDirectorFactoryConfig();

 scoreDirectorFactoryConfig.setScoreDefinitionType(ScoreDirectorFactoryConfig.ScoreDefinitionType.SIMPLE);

 scoreDirectorFactoryConfig.setScoreDrlList(

 Arrays.asList("/org/optaplanner/examples/nqueens/solver/

nQueensScoreRules.drl"));

 solverConfig.setScoreDirectorFactoryConfig(scoreDirectorFactoryConfig);

 TerminationConfig terminationConfig = new TerminationConfig();

 // ...

 solverConfig.setTerminationConfig(terminationConfig);

 List<SolverPhaseConfig> solverPhaseConfigList = new ArrayList<SolverPhaseConfig>();

 ConstructionHeuristicSolverPhaseConfig constructionHeuristicSolverPhaseConfig

 = new ConstructionHeuristicSolverPhaseConfig();

 // ...

 solverPhaseConfigList.add(constructionHeuristicSolverPhaseConfig);

 LocalSearchSolverPhaseConfig localSearchSolverPhaseConfig = new LocalSearchSolverPhaseConfig();

 // ...

 solverPhaseConfigList.add(localSearchSolverPhaseConfig);

 solverConfig.setSolverPhaseConfigList(solverPhaseConfigList);

 Solver solver = solverConfig.buildSolver();

It is highly recommended to configure by XML file instead of this API. To dynamically

configure a value at runtime, use the XML file as a template and extract the SolverConfig class

with getSolverConfig() to configure the dynamic value at runtime:

 XmlSolverFactory solverFactory = new XmlSolverFactory();

Chapter 4. Planner configuration

54

 "/org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");

 SolverConfig solverConfig = solverFactory.getSolverConfig();

 solverConfig.getTerminationConfig().setMaximumMinutesSpend(userInput);

 Solver solver = solverConfig.buildSolver();

4.3. Model your planning problem

4.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You 'll recognize domain classes in there, each of

which is one of these:

• A unrelated class: not used by any of the score constraints. From a planning standpoint, this

data is obsolete.

• A problem fact class: used by the score constraints, but does NOT change during planning

(as long as the problem stays the same). For example: Bed, Room, Shift, Employee, Topic,

Period, ...

• A planning entity class: used by the score constraints and changes during planning. For

example: BedDesignation, ShiftAssignment, Exam, ...

Ask yourself: What class changes during planning? Which class has variables that I want the

Solver to change for me? That class is a planning entity. Most use cases have only 1 planning

entity class.

Note

In real-time planning, problem facts can change during planning, because the

problem itself changes. However, that doesn't make them planning entities.

A good model can greatly improve the success of your planning implementation. For inspiration,

take a look at how the examples modeled their domain:

Problem fact

55

When in doubt, it's usually the many side of a many to one relationship that is the planning entity.

For example in employee rostering, the planning entity class is ShiftAssignment, not Employee.

Vehicle routing is special, because it uses a chained planning variable.

In OptaPlanner all problems facts and planning entities are plain old JavaBeans (POJO's).

You can load them from a database (JDBC/JPA/JDO), an XML file, a data repository, a noSQL

cloud, ...: OptaPlanner doesn't care.

4.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.

Implementing the interface Serializable is recommended (but not required). For example in n

queens, the columns and rows are problem facts:

public class Column implements Serializable {

 private int index;

 // ... getters

Chapter 4. Planner configuration

56

}

public class Row implements Serializable {

 private int index;

 // ... getters

}

A problem fact can reference other problem facts of course:

public class Course implements Serializable {

 private String code;

 private Teacher teacher; // Other problem fact

 private int lectureSize;

 private int minWorkingDaySize;

 private List<Curriculum> curriculumList; // Other problem facts

 private int studentSize;

 // ... getters

}

A problem fact class does not require any Planner specific code. For example, you can reuse your

domain classes, which might have JPA annotations.

Note

Generally, better designed domain classes lead to simpler and more efficient score

constraints. Therefore, when dealing with a messy legacy system, it can sometimes

be worth it to convert the messy domain set into a planner specific POJO set first.

For example: if your domain model has 2 Teacher instances for the same teacher

that teaches at 2 different departments, it's hard to write a correct score constraint

that constrains a teacher's spare time.

Alternatively, you can sometimes also introduce a cached problem fact to enrich

the domain model for planning only.

Planning entity and planning variables

57

4.3.3. Planning entity and planning variables

4.3.3.1. Planning entity

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that

changes to another row. A planning problem has multiple planning entities, for example for a single

n queens problem, each Queen is a planning entity. But there's usually only 1 planning entity class,

for example the Queen class.

A planning entity class needs to be annotated with the @PlanningEntity annotation.

Each planning entity class has 1 or more planning variables. It usually also has 1 or more defining

properties. For example in n queens, a Queen is defined by its Column and has a planning variable

Row. This means that a Queen's column never changes during solving, while its row does change.

@PlanningEntity

public class Queen {

 private Column column;

 // Planning variables: changes during planning, between score calculations.

 private Row row;

 // ... getters and setters

}

A planning entity class can have multiple planning variables. For example, a Lecture is defined

by its Course and its index in that course (because 1 course has multiple lectures). Each Lecture

needs to be scheduled into a Period and a Room so it has 2 planning variables (period and room).

For example: the course Mathematics has 8 lectures per week, of which the first lecture is Monday

morning at 08:00 in room 212.

@PlanningEntity

public class Lecture {

 private Course course;

 private int lectureIndexInCourse;

 // Planning variables: changes during planning, between score calculations.

 private Period period;

 private Room room;

 // ...

}

Chapter 4. Planner configuration

58

The solver configuration also needs to be made aware of each planning entity class:

<solver>

 ...

 <planningEntityClass>org.optaplanner.examples.nqueens.domain.Queen</

planningEntityClass>

 ...

</solver>

Some uses cases have multiple planning entity classes. For example: route freight and trains

into railway network arcs, where each freight can use multiple trains over its journey and each

train can carry multiple freights per arc. Having multiple planning entity classes directly raises the

implementation complexity of your use case.

Note

Do not create unnecessary planning entity classes. This leads to difficult Move

implementations and slower score calculation.

For example, do not create a planning entity class to hold the total free time of

a teacher, which needs to be kept up to date as the Lecture planning entities

change. Instead, calculate the free time in the score constraints and put the result

per teacher into a logically inserted score object.

If historic data needs to be considered too, then create problem fact to hold the

historic data up to, but not including, the planning window (so it doesn't change

when a planning entity changes) and let the score constraints take it into account.

4.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning

entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in

course scheduling lectures with more students are more difficult to schedule and in n queens the

middle queens are more difficult to fit on the board.

Therefore, you can set a difficultyComparatorClass to the @PlanningEntity annotation:

@PlanningEntity(difficultyComparatorClass = CloudProcessDifficultyComparator.class)

public class CloudProcess {

 // ...

}

public class CloudProcessDifficultyComparator implements Comparator<CloudProcess> {

Planning entity and planning variables

59

 public int compare(CloudProcess a, CloudProcess b) {

 return new CompareToBuilder()

 .append(a.getRequiredMultiplicand(), b.getRequiredMultiplicand())

 .append(a.getId(), b.getId())

 .toComparison();

 }

}

Alternatively, you can also set a difficultyWeightFactoryClass to the @PlanningEntity

annotation, so you have access to the rest of the problem facts from the Solution too:

@PlanningEntity(difficultyWeightFactoryClass = QueenDifficultyWeightFactory.class)

public class Queen {

 // ...

}

See Sorted Selection for more information.

Important

Difficulty should be implemented ascending: easy entities are lower, difficult

entities are higher. For example in bin packing: small item < medium item < big

item.

Even though some algorithms start with the more difficult entities first, they just

reverse the ordering.

None of the current planning variable state should be used to compare planning entity difficult.

During construction heuristics, those variables are likely to be null anyway. For example, a

Queen's row variable should not be used.

4.3.3.3. Planning variable

A planning variable is a property (including getter and setter) on a planning entity. It points to a

planning value, which changes during planning. For example, a Queen's row property is a planning

variable. Note that even though a Queen's row property changes to another Row during planning,

no Row instance itself is changed.

A planning variable getter needs to be annotated with the @PlanningVariable annotation.

Furthermore, it needs a @ValueRange annotation too.

@PlanningEntity

Chapter 4. Planner configuration

60

public class Queen {

 private Row row;

 // ...

 @PlanningVariable

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = rowList")

 public Row getRow() {

 return row;

 }

 public void setRow(Row row) {

 this.row = row;

 }

}

4.3.3.4. Nullable planning variable

By default, an initialized planning variable cannot be null, so an initialized solution will never use

null for any of its planning variables. In over-constrained use case, this can be contra productive.

For example: in task assignment with too many tasks for the workforce, we would rather leave low

priority tasks unassigned instead of assigning them to an overloaded worker.

To allow an initialized planning variable to be null, set nullable to true:

 @PlanningVariable(nullable = true)

 @ValueRange(...)

 public Worker getWorker() {

 return worker;

 }

Important

Planner will automatically add the value null to the value range. There is no need

to add null in a collection used by a ValueRange.

Note

Using a nullable planning variable implies that your score calculation is responsible

for punishing (or even rewarding) variables with a null value.

Planning value and planning value ranges

61

Repeated planning (especially real-time planning) does not mix well with a nullable planning

variable: every time the Solver starts or a problem fact change is made, the construction

heuristics will try to initialize all the null variables again, which can be a huge waste of time.

One way to deal with this, is to change when a planning entity should be reinitialized with an

reinitializeVariableEntityFilter:

 @PlanningVariable(nullable = true, reinitializeVariableEntityFilter = ReinitializeTaskFilter.class)

 @ValueRange(...)

 public Worker getWorker() {

 return worker;

 }

4.3.3.5. When is a planning variable considered initialized?

A planning variable is considered initialized if its value is not null or if the variable is

nullable. So a nullable variable is always considered initialized, even when a custom

reinitializeVariableEntityFilter triggers a reinitialization.

A planning entity is initialized if all of its planning variables are initialized.

A Solution is initialized if all of its planning entities are initialized.

4.3.4. Planning value and planning value ranges

4.3.4.1. Planning value

A planning value is a possible value for a planning variable. Usually, a planning value is a problem

fact, but it can also be any object, for example a double. It can even be another planning entity or

even a interface implemented by a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set

can be a discrete (for example row 1, 2, 3 or 4) or continuous (for example any double between

0.0 and 1.0). Continuous planning variables are currently undersupported and require the use

of custom moves.

There are several ways to define the value range of a planning variable with the @ValueRange

annotation.

4.3.4.2. Planning value range

4.3.4.2.1. ValueRange from Solution property

All instances of the same planning entity class share the same set of possible planning values for

that planning variable. This is the most common way to configure a value range.

The Solution implementation has property which returns a Collection. Any value from that

Collection is a possible planning value for this planning variable.

Chapter 4. Planner configuration

62

 @PlanningVariable

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = "rowList")

 public Row getRow() {

 return row;

 }

public class NQueens implements Solution<SimpleScore> {

 // ...

 public List<Row> getRowList() {

 return rowList;

 }

}

That Collection must not contain the value null, even for a nullable planning variable.

4.3.4.2.2. ValueRange from planning entity

Each planning entity has its own set of possible planning values for a planning variable. For

example, if a teacher can never teach in a room that does not belong to his department, lectures

of that teacher can limit their room value range to the rooms of his department.

 @PlanningVariable

 @ValueRange(type = ValueRangeType.FROM_PLANNING_ENTITY_PROPERTY, planningEntityProperty = "possibleRoomList")

 public Room getRoom() {

 return room;

 }

 public List<Room> getPossibleRoomList() {

 return getCourse().getTeacher().getPossibleRoomList();

 }

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not

have a feasible solution). For example: Unless there is no other way, a teacher can not teach in

a room that does not belong to his department. In this case, the teacher should not be limited in

his room value range (because sometimes there is no other way).

Note

By limiting the value range specifically of 1 planning entity, you are effectively

making a build-in hard constraint. This can be a very good thing, as the number of

Planning value and planning value ranges

63

possible solutions is severely lowered. But this can also be a bad thing because

it takes away the freedom of the optimization algorithms to temporarily break that

constraint in order to escape a local optima.

A planning entity should not use other planning entities to determinate its value range. That would

only try to make it solve the planning problem itself and interfere with the optimization algorithms.

This value range is not compatible with a chained variable.

4.3.4.2.3. ValueRange undefined

Leaves the value range undefined. Most optimization algorithms do not support this value range.

 @PlanningVariable

 @ValueRange(type = ValueRangeType.UNDEFINED)

 public Row getRow() {

 return row;

 }

4.3.4.2.4. Combining ValueRanges

Value ranges can be combined, for example:

 @PlanningVariable(...)

 @ValueRanges({

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = "companyCarList"),

 @ValueRange(type = ValueRangeType.FROM_PLANNING_ENTITY_PROPERTY, planningEntityProperty = "personalCarList"})

 public Car getCar() {

 return car;

 }

4.3.4.2.5. A ValueRange which includes other planning entities

In some cases (such as in chaining), the planning value itself is sometimes another planning entity.

In such cases, it's often required that a planning entity is only eligible as a planning value if it's

initialized:

 @PlanningVariable

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = "copList", excludeUninitializedPlanningEntity = true)

 public Cop getPartner() {

 return partner;

 }

Chapter 4. Planner configuration

64

TODO: this is likely to change in the future (jira [https://issues.jboss.org/browse/PLANNER-115]),

as it should support specific planning variable initialization too.

4.3.4.3. Chained planning variable

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning

entities point to each other and form a chain.

A planning variable that is chained either:

• Directly points to a planning fact, which is called an anchor.

• Points to another planning entity with the same planning variable, which recursively points to

an anchor.

Here are some example of valid and invalid chains:

Every initialized planning entity is part of an open-ended chain that begins from an anchor.

A valid model means that:

• A chain is never a loop. The tail is always open.

https://issues.jboss.org/browse/PLANNER-115
https://issues.jboss.org/browse/PLANNER-115

Planning value and planning value ranges

65

• Every chain always has exactly 1 anchor. The anchor is a problem fact, never a planning entity.

• A chain is never a tree, it is always a line. Every anchor or planning entity has at most 1 trailing

planning entity.

• Every initialized planning entity is part of a chain.

• An anchor with no planning entities pointing to it, is also considered a chain.

Warning

A planning problem instance given to the Solver must be valid.

Note

If your constraints dictate a closed chain, model it as an open-ended chain (which

is easier to persist in a database) and implement a score constraint for the last

entity back to the anchor.

The optimization algorithms and build-in MoveFactory's do chain correction to guarantee that the

model stays valid:

Chapter 4. Planner configuration

66

Warning

A custom Move implementation must leave the model in a valid state.

For example, in TSP the anchor is a Domicile (in vehicle routing it is the vehicle):

public class Domicile ... implements Appearance {

 ...

 public City getCity() {...}

}

The anchor (which is a problem fact) and the planning entity implement a common interface, for

example TSP's Appearance:

Planning value and planning value ranges

67

public interface Appearance {

 City getCity();

}

That interface is the return type of the planning variable. Furthermore, the planning variable is

chained. For example TSP's Visit (in vehicle routing it is the customer):

@PlanningEntity

public class Visit ... implements Appearance {

 ...

 public City getCity() {...}

 @PlanningVariable(chained = true)

 @ValueRanges({

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = "domicileList"),

 @ValueRange(type = ValueRangeType.FROM_SOLUTION_PROPERTY, solutionProperty = "visitList",

 excludeUninitializedPlanningEntity = true)})

 public Appearance getPreviousAppearance() {

 return previousAppearance;

 }

 public void setPreviousAppearance(Appearance previousAppearance) {

 this.previousAppearance = previousAppearance;

 }

}

Notice how 2 value ranges need to be combined:

• The value range which holds the anchors, for example domicileList.

• The value range which holds the initialized planning entities, for example visitList. This

always requires an enabled excludeUninitializedPlanningEntity, because an initialized

entity should never point to an uninitialized entity: that would break the principle that every chain

must have an anchor.

4.3.4.4. Planning value strength

Some optimization algorithms work more efficiently if they have an estimation of which planning

values are stronger, which means they are more likely to satisfy a planning entity. For example: in

Chapter 4. Planner configuration

68

bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms

are less likely to break the student capacity constraint.

Therefore, you can set a strengthComparatorClass to the @PlanningVariable annotation:

 @PlanningVariable(strengthComparatorClass = CloudComputerStrengthComparator.class)

 // ...

 public CloudComputer getComputer() {

 // ...

 }

public class CloudComputerStrengthComparator implements Comparator<CloudComputer> {

 public int compare(CloudComputer a, CloudComputer b) {

 return new CompareToBuilder()

 .append(a.getMultiplicand(), b.getMultiplicand())

 .append(b.getCost(), a.getCost()) // Descending (but this

 is debatable)

 .append(a.getId(), b.getId())

 .toComparison();

 }

}

Note

If you have multiple planning value classes in the same value range, the

strengthComparatorClass needs to implement a Comparator of a common

superclass (for example Comparator<Object>) and be able to handle comparing

instances of those different classes.

Alternatively, you can also set a strengthWeightFactoryClass to the @PlanningVariable

annotation, so you have access to the rest of the problem facts from the solution too:

 @PlanningVariable(strengthWeightFactoryClass = RowStrengthWeightFactory.class)

 // ...

 public Row getRow() {

 // ...

 }

See Sorted Selection for more information.

Planning problem and planning solution

69

Important

Strength should be implemented ascending: weaker values are lower, stronger

values are higher. For example in bin packing: small container < medium container

< big container.

None of the current planning variable state in any of the planning entities should be used to

compare planning values. During construction heuristics, those variables are likely to be null

anyway. For example, none of the row variables of any Queen may be used to determine the

strength of a Row.

4.3.5. Planning problem and planning solution

4.3.5.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Solver to solve. You

must implement this class. For example in n queens, this in the NQueens class which contains a

Column list, a Row list and a Queen list.

A planning problem is actually a unsolved planning solution or - stated differently - an uninitialized

Solution. Therefor, that wrapping class must implement the Solution interface. For example in

n queens, that NQueens class implements Solution, yet every Queen in a fresh NQueens class is

not yet assigned to a Row (their row property is null). So it's not a feasible solution. It's not even

a possible solution. It's an uninitialized solution.

4.3.5.2. The Solution interface

You need to present the problem as a Solution instance to the Solver. So you need to have a

class that implements the Solution interface:

public interface Solution<S extends Score> {

 S getScore();

 void setScore(S score);

 Collection<? extends Object> getProblemFacts();

}

For example, an NQueens instance holds a list of all columns, all rows and all Queen instances:

public class NQueens implements Solution<SimpleScore> {

 private int n;

Chapter 4. Planner configuration

70

 // Problem facts

 private List<Column> columnList;

 private List<Row> rowList;

 // Planning entities

 private List<Queen> queenList;

 // ...

}

4.3.5.3. The getScore() and setScore() methods

A Solution requires a score property. The score property is null if the Solution is uninitialized

or if the score has not yet been (re)calculated. The score property is usually typed to the specific

Score implementation you use. For example, NQueens uses a SimpleScore:

public class NQueens implements Solution<SimpleScore> {

 private SimpleScore score;

 public SimpleScore getScore() {

 return score;

 }

 public void setScore(SimpleScore score) {

 this.score = score;

 }

 // ...

}

Most use cases use a HardSoftScore instead:

public class CourseSchedule implements Solution<HardSoftScore> {

 private HardSoftScore score;

 public HardSoftScore getScore() {

 return score;

 }

 public void setScore(HardSoftScore score) {

 this.score = score;

 }

Planning problem and planning solution

71

 // ...

}

See the Score calculation section for more information on the Score implementations.

4.3.5.4. The getProblemFacts() method

The method is only used if Drools is used for score calculation. Other score directors do not use it.

All objects returned by the getProblemFacts() method will be asserted into the Drools working

memory, so the score rules can access them. For example, NQueens just returns all Column and

Row instances.

 public Collection<? extends Object> getProblemFacts() {

 List<Object> facts = new ArrayList<Object>();

 facts.addAll(columnList);

 facts.addAll(rowList);

 // Do not add the planning entity's (queenList) because that will be

 done automatically

 return facts;

 }

All planning entities are automatically inserted into the Drools working memory. Do not add them

in the method getProblemFacts().

Note

A common mistake is to use facts.add(...) instead of fact.addAll(...) for a

Collection, which leads to score rules failing to match because the elements of

that Collection aren't in the Drools working memory.

The method getProblemFacts() is not called much: at most only once per solver phase per

solver thread.

4.3.5.5. Cached problem fact

A cached problem fact is a problem fact that doesn't exist in the real domain model, but is

calculated before the Solver really starts solving. The method getProblemFacts() has the

chance to enrich the domain model with such cached problem facts, which can lead to simpler

and faster score constraints.

For example in examination, a cached problem fact TopicConflict is created for every 2 Topic's

which share at least 1 Student.

Chapter 4. Planner configuration

72

 public Collection<? extends Object> getProblemFacts() {

 List<Object> facts = new ArrayList<Object>();

 // ...

 facts.addAll(calculateTopicConflictList());

 // ...

 return facts;

 }

 private List<TopicConflict> calculateTopicConflictList() {

 List<TopicConflict> topicConflictList = new ArrayList<TopicConflict>();

 for (Topic leftTopic : topicList) {

 for (Topic rightTopic : topicList) {

 if (leftTopic.getId() < rightTopic.getId()) {

 int studentSize = 0;

 for (Student student : leftTopic.getStudentList()) {

 if (rightTopic.getStudentList().contains(student)) {

 studentSize++;

 }

 }

 if (studentSize > 0) {

 topicConflictList.add(new TopicConflict(leftTopic, rightTopic, studentSize));

 }

 }

 }

 }

 return topicConflictList;

 }

Any score constraint that needs to check if no 2 exams have a topic which share a student are

being scheduled close together (depending on the constraint: at the same time, in a row or in the

same day), can simply use the TopicConflict instance as a problem fact, instead of having to

combine every 2 Student instances.

4.3.5.6. Cloning a Solution

Most (if not all) optimization algorithms clone the solution each time they encounter a new best

solution (so they can recall it later) or to work with multiple solutions in parallel.

Note

There are many ways to clone, such as a shallow clone, deep clone, ... This context

focuses on a planning clone.

A planning clone of a Solution must fulfill these requirements:

Planning problem and planning solution

73

• The clone must represent the same planning problem. Usually it reuses the same instances of

the problem facts and problem fact collections as the original.

• The clone must use different, cloned instances of the entities and entity collections. Changes

to an original Solution's entity's variables must not effect its clone.

Implementing a planning clone method is hard, therefore you don't need to implement it.

4.3.5.6.1. FieldAccessingSolutionCloner

This SolutionCloner is used by default. It works for the majority of use cases.

Warning

When the FieldAccessingSolutionCloner clones your entity collection, it might

not recognize the implementation and replace it with ArrayList, LinkedHashSet

or TreeSet (whichever is more applicable). It recognizes most of the common JDK

Collection implementations.

Chapter 4. Planner configuration

74

4.3.5.6.2. Custom cloning: Make Solution implement PlanningCloneable

If your Solution implements PlanningCloneable, Planner will automatically choose to clone it by

calling the method planningClone().

public interface PlanningCloneable<T> {

 T planningClone();

}

For example: If NQueens implements PlanningCloneable, it would only deep clone all Queen

instances. When the original solution is changed during planning, by changing a Queen, the clone

stays the same.

public class NQueens implements Solution<...>, PlanningCloneable<NQueens> {

 ...

 /**

 * Clone will only deep copy the {@link #queenList}.

 */

 public NQueens planningClone() {

 NQueens clone = new NQueens();

 clone.id = id;

 clone.n = n;

 clone.columnList = columnList;

 clone.rowList = rowList;

 List<Queen> clonedQueenList = new ArrayList<Queen>(queenList.size());

 for (Queen queen : queenList) {

 clonedQueenList.add(queen.planningClone());

 }

 clone.queenList = clonedQueenList;

 clone.score = score;

 return clone;

 }

}

The planningClone() method should only deep clone the planning entities. Notice that the

problem facts, such as Column and Row are normally not cloned: even their List instances are

not cloned. If you were to clone the problem facts too, then you'd have to make sure that the

new planning entity clones also refer to the new problem facts clones used by the solution. For

example, if you would clone all Row instances, then each Queen clone and the NQueens clone itself

should refer to those new Row clones.

Planning problem and planning solution

75

Warning

Cloning an entity with a chained variable is devious: a variable of an entity A might

point to another entity B. If A is cloned, then it's variable must point to the clone

of B, not the original B.

4.3.5.7. Build an uninitialized solution

Build a Solution instance to represent your planning problem, so you can set it on the Solver

as the planning problem to solve. For example in n queens, an NQueens instance is created with

the required Column and Row instances and every Queen set to a different column and every row

set to null.

 private NQueens createNQueens(int n) {

 NQueens nQueens = new NQueens();

 nQueens.setId(0L);

 nQueens.setN(n);

 nQueens.setColumnList(createColumnList(nQueens));

 nQueens.setRowList(createRowList(nQueens));

 nQueens.setQueenList(createQueenList(nQueens));

 return nQueens;

 }

 private List<Queen> createQueenList(NQueens nQueens) {

 int n = nQueens.getN();

 List<Queen> queenList = new ArrayList<Queen>(n);

 long id = 0;

 for (Column column : nQueens.getColumnList()) {

 Queen queen = new Queen();

 queen.setId(id);

 id++;

 queen.setColumn(column);

 // Notice that we leave the PlanningVariable properties on null

 queenList.add(queen);

 }

 return queenList;

 }

Chapter 4. Planner configuration

76

Figure 4.1. Uninitialized solution for the 4 queens puzzle

Usually, most of this data comes from your data layer, and your Solution implementation just

aggregates that data and creates the uninitialized planning entity instances to plan:

 private void createLectureList(CourseSchedule schedule) {

 List<Course> courseList = schedule.getCourseList();

 List<Lecture> lectureList = new ArrayList<Lecture>(courseList.size());

 for (Course course : courseList) {

 for (int i = 0; i < course.getLectureSize(); i++) {

 Lecture lecture = new Lecture();

 lecture.setCourse(course);

 lecture.setLectureIndexInCourse(i);

 // Notice that we leave the PlanningVariable properties

 (period and room) on null

 lectureList.add(lecture);

 }

 }

 schedule.setLectureList(lectureList);

 }

4.4. Use the Solver

4.4.1. The Solver interface

A Solver implementation will solve your planning problem.

public interface Solver {

 void setPlanningProblem(Solution planningProblem);

 void solve();

 Solution getBestSolution();

Solving a problem

77

 // ...

}

A Solver can only solve 1 planning problem instance at a time. A Solver should only be accessed

from a single thread, except for the methods that are specifically javadocced as being thread-safe.

It's build with a SolverFactory, do not implement or build it yourself.

4.4.2. Solving a problem

Solving a problem is quite easy once you have:

• A Solver build from a solver configuration

• A Solution that represents the planning problem instance

Just set the planning problem, solve it and extract the best solution:

 solver.setPlanningProblem(planningProblem);

 solver.solve();

 Solution bestSolution = solver.getBestSolution();

For example in n queens, the method getBestSolution() will return an NQueens instance with

every Queen assigned to a Row.

Figure 4.2. Best solution for the 4 queens puzzle in 8 ms (also an optimal

solution)

The solve() method can take a long time (depending on the problem size and the solver

configuration). The Solver will remember (actually clone) the best solution it encounters during

its solving. Depending on a number factors (including problem size, how much time the Solver

has, the solver configuration, ...), that best solution will be a feasible or even an optimal solution.

Chapter 4. Planner configuration

78

Note

The Solution instance given to the method setPlanningProblem() will be

changed by the Solver, but it do not mistake it for the best solution.

The Solution instance returned by the method getBestSolution() will most

likely be a clone of the instance given to the method setPlanningProblem(),

which means it's a different instance.

Note

The Solution instance given to the method setPlanningProblem() does not

need to be uninitialized. It can be partially or fully initialized, which is likely to be

the case in repeated planning.

4.4.3. Environment mode: Are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not

affect the logging level.

You can set the environment mode in the solver configuration XML file:

<solver>

 <environmentMode>FAST_ASSERT</environmentMode>

 ...

</solver>

A solver has a single Random instance. Some solver configurations use the Random instance a lot

more than others. For example simulated annealing depends highly on random numbers, while

tabu search only depends on it to deal with score ties. The environment mode influences the seed

of that Random instance.

There are 4 environment modes:

4.4.3.1. FULL_ASSERT

The FULL_ASSERT mode turns on all assertions (such as assert that the incremental score

calculation is uncorrupted for each move) to fail-fast on a bug in a Move implementation, a score

rule, the rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the

method calculateScore() more frequently than a non assert mode.

Environment mode: Are there bugs in my code?

79

The FULL_ASSERT mode is horribly slow (because it doesn't rely on delta based score

calculation).

4.4.3.2. NON_INTRUSIVE_FULL_ASSERT

The NON_INTRUSIVE_FULL_ASSERT turns on several assertions to fail-fast on a bug in a Move

implementation, a score rule, the rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is non-intrusive because it does not call

the method calculateScore() more frequently than a non assert mode.

The NON_INTRUSIVE_FULL_ASSERT mode is horribly slow (because it doesn't rely on delta

based score calculation).

4.4.3.3. FAST_ASSERT

The FAST_ASSERT mode turns on most assertions (such as assert that an undo Move's score

is the same as before the Move) to fail-fast on a bug in a Move implementation, a score rule, the

rule engine itself, ...

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the

method calculateScore() more frequently than a non assert mode.

The FAST_ASSERT mode is slow.

It's recommended to write a test case which does a short run of your planning problem with the

FAST_ASSERT mode on.

4.4.3.4. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In

this mode, 2 runs in the same Planner version will execute the same code in the same order.

Those 2 runs will have the same result, except if the note below applies. This allows you to

consistently reproduce bugs. It also allows you to benchmark certain refactorings (such as a score

constraint optimization) fairly across runs.

Note

Despite the reproducible mode, your application might still not be fully reproducible

because of:

• Use of HashSet (or another Collection which has an inconsistent order

between JVM runs) for collections of planning entities or planning values (but

not normal problem facts), especially in the Solution implementation. Replace

it with LinkedHashSet.

• Combining a time gradient dependent algorithms (most notably simulated

annealing) together with time spend termination. A sufficiently large difference

Chapter 4. Planner configuration

80

in allocated CPU time will influence the time gradient values. Replace simulated

annealing with late acceptance. Or instead, replace time spend termination with

step count termination.

The reproducible mode is slightly slower than the production mode. If your production environment

requires reproducibility, use it in production too.

In practice, this mode uses the default random seed, and it also disables certain concurrency

optimizations (such as work stealing).

4.4.3.5. PRODUCTION

The production mode is the fastest, but not reproducible. It is recommended for a production

environment, unless reproducibility is required.

The random seed is different on every run, which makes it more robust against an unlucky random

seed. An unlucky random seed gives a bad result on a certain data set with a certain solver

configuration. Note that in most use cases the impact of the random seed is relatively low on the

result (even with simulated annealing). An occasional bad result is far more likely to be caused

by another issue (such as a score trap).

4.4.4. Logging level: What is the Solver doing?

The best way to illuminate the black box that is a Solver, is to play with the logging level:

• error: Log errors, except those that are thrown to the calling code as a RuntimeException.

Note

If an error happens, Planner normally fails fast: it throws a subclass of

RuntimeException with a detailed message to the calling code. It does not

log it as an error itself to avoid duplicate log messages. Except if the calling

code explicitly catches and eats that RuntimeException, a Thread's default

ExceptionHandler will log it as an error anyway. Meanwhile, the code is

disrupted from doing further harm or obfuscating the error.

• warn: Log suspicious circumstances.

• info: Log every phase and the solver itself. See scope overview.

• debug: Log every step of every phase. See scope overview.

• trace: Log every move of every step of every phase. See scope overview.

Logging level: What is the Solver doing?

81

Note

Turning on trace logging, will slow down performance considerably: it's often

4 times slower. However, it's invaluable during development to discover a

bottleneck.

For example, set it to debug logging, to see when the phases end and how fast steps are taken:

INFO Solving started: time spend (0), score (null), new best score (null),

 random seed (0).

DEBUG Step index (0), time spend (1), score (0), initialized planning entity

 (col2@row0).

DEBUG Step index (1), time spend (3), score (0), initialized planning entity

 (col1@row2).

DEBUG Step index (2), time spend (4), score (0), initialized planning entity

 (col3@row3).

DEBUG Step index (3), time spend (5), score (-1), initialized planning

 entity (col0@row1).

INFO Phase (0) constructionHeuristic ended: step total (4), time spend (6),

 best score (-1).

DEBUG Step index (0), time spend (10), score (-1), best score (-1),

 accepted/selected move count (12/12) for picked step (col1@row2 => row3).

DEBUG Step index (1), time spend (12), score (0), new best score (0),

 accepted/selected move count (12/12) for picked step (col3@row3 => row2).

INFO Phase (1) localSearch ended: step total (2), time spend (13), best score (0).

INFO Solving ended: time spend (13), best score (0), average calculate count

 per second (4846).

All time spends are in milliseconds.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade which

delegates every log message to Logback, Apache Commons Logging, Log4j or java.util.logging.

Add a dependency to the logging adaptor for your logging framework of choice.

If you're not using any logging framework yet, use Logback by adding this Maven dependency

(there is no need to add an extra bridge dependency):

 <dependency>

 <groupId>ch.qos.logback</groupId>

 <artifactId>logback-classic</artifactId>

 <version>1.x</version>

 </dependency>

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 4. Planner configuration

82

Configure the logging level on the package org.optaplanner in your logback.xml file:

<configuration>

 <logger name="org.optaplanner" level="debug"/>

 ...

<configuration>

If instead, you're still using Log4J (and you don't want to switch to its faster successor, Logback),

add the bridge dependency:

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.x</version>

 </dependency>

And configure the logging level on the package org.optaplanner in your log4j.xml file:

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <category name="org.optaplanner">

 <priority value="debug" />

 </category>

 ...

</log4j:configuration>

Chapter 5.

83

Chapter 5. Score calculation

5.1. Score terminology

5.1.1. What is a score?

Every initialized Solution has a score. That score is an objective way to compare 2 solutions:

the solution with the higher score is better. The Solver aims to find the Solution with the highest

Score of all possible solutions. The best solution is the Solution with the highest Score that

Solver has encountered during solving, which might be the optimal solution.

Planner cannot automatically know which Solution is best for your business, so you need to tell

it how to calculate the score of a given Solution according to your business needs. There are

multiple score techniques that you can use and combine:

• Maximize or minimize a constraint: score constraint signum (positive or negative)

• Put a cost/profit on constraints: score constraint weight

• Prioritize constraints: score level

• Pareto scoring

5.1.2. Score constraint signum (positive or negative)

All score techniques are based on constraints. Such a constraint can be a simple pattern (such as

Maximize the apple harvest in the solution) or a more complex pattern. A positive constraint is a

constraint you're trying to maximize. A negative constraint is a constraint you're trying to minimize.

Chapter 5. Score calculation

84

Notice in the image above, that the optimal solution always has the highest score, regardless if

the constraints are positive or negative.

Most planning problems have only negative constraints and therefore have a negative score. In

that case, the score is usually the sum of the weight of the negative constraints being broken, with

a perfect score of 0. This explains why the score of a solution of 4 queens is the negative (and

not the positive!) of the number of queen couples which can attack each other.

Negative and positive constraints can be combined, even in the same score level.

Note

Don't presume your business knows all its score constraints in advance. Expect

score constraints to be added or changed after the first releases.

When a constraint activates (because the negative constraint is broken or the positive constraint

is fulfilled) on a certain planning entity set, it is called a constraint match.

Score constraint weight

85

5.1.3. Score constraint weight

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking

another constraint x times, then those 2 constraints have a different weight (but they are in the

same score level). For example in vehicle routing, you can make 2 "unhappy driver" constraint

matches count as much as 1 "fuel tank usage" constraint match:

Score weighting is often used in use cases where you can put a price tag on everything. In that

case, the positive constraints maximize revenue and the negative constraints minimize expenses:

together they maximize profit. Alternatively, score weighting is also often used to create social

fairness. For example: nurses that request a free day on New Year's eve pay a higher weight

than on a normal day.

The weight of a constraint match can be dynamically based on the planning entities involved. For

example in cloud balance: the weight of the soft constraint match for an active Computer is the

cost of that Computer.

5.1.4. Score level

Sometimes a score constraint outranks another score constraint, no matter how many times the

other is broken. In that case, those score constraints are in different levels. For example: a nurse

Chapter 5. Score calculation

86

cannot do 2 shifts at the same time (due to the constraints of physical reality), this outranks all

nurse happiness constraints.

Most use cases have only 2 score levels: hard and soft. When comparing 2 scores, they are

compared lexicographically: the first score level gets compared first. If those differ, the others

score levels are ignored. For example: a score that breaks 0 hard constraints and 1000000 soft

constraints is better than a score that breaks 1 hard constraint and 0 soft constraints.

Score levels often employ score weighting per level. In such case, the hard constraint level

usually makes the solution feasible and the soft constraint level maximizes profit by weighting the

constraints on price.

Don't use a big constraint weight when your business actually wants different score levels. That

hack, known as score folding, is broken:

Pareto scoring (AKA multi-objective optimization scoring)

87

Note

Your business will probably tell you that your hard constraints all have the same

weight, because they cannot be broken (so their weight does not matter). This is not

true and it could create a score trap. For example in cloud balance: if a Computer

has 7 CPU too little for its Processes, then it must be weighted 7 times as much

as if it had only 1 CPU too little. This way, there is an incentive to move a Process

with 6 CPU or less away from that Computer.

3 or more score levels is supported. For example: a company might decide that profit outranks

employee satisfaction (or visa versa), while both are outranked by the constraints of physical

reality.

5.1.5. Pareto scoring (AKA multi-objective optimization scoring)

Far less common is the use case of pareto optimization, which is also known under the more

confusing term multi-objective optimization. In pareto scoring, score constraints are in the same

score level, yet they are not weighted against each other. When 2 scores are compared, each

Chapter 5. Score calculation

88

of the score constraints are compared individually and the score with the most dominating score

constraints wins. Pareto scoring can even be combined with score levels and score constraint

weighting.

Consider this example with positive constraints, where we want to get the most apples and

oranges. Since it's impossible to compare apples and oranges, we can't weight them against each

other. Yet, despite that we can't compare them, we can state that 2 apples are better then 1 apple.

Similarly, we can state that 2 apples and 1 orange are better than just 1 orange. So despite our

inability to compare some Scores conclusively (at which point we declare them equal), we can

find a set of optimal scores. Those are called pareto optimal.

Scores are considered equal far more often. It's left up to a human to choose the better out of a

set of best solutions (with equal scores) found by Planner. In the example above, the user must

choose between solution A (3 apples and 1 orange) and solution B (1 apples and 6 oranges). It's

guaranteed that Planner has not found another solution which has more apples or more oranges

or even a better combination of both (such as 2 apples and 3 oranges).

To implement pareto scoring in Planner, implement a custom ScoreDefinition and Score.

Future versions will provide out-of-the-box support.

Combining score techniques

89

Note

A pareto Score's method compareTo is not transitive because it does a pareto

comparison. For example: 2 apples is greater than 1 apple. 1 apples is equal to

1 orange. Yet, 2 apples are not greater than 1 orange (but actually equal). Pareto

comparison violates the contract of the interface java.lang.Comparable's method

compareTo, but Planner's systems are pareto comparison safe, unless explicitly

stated otherwise in this documentation.

5.1.6. Combining score techniques

All the score techniques mentioned above, can be combined seamlessly:

5.1.7. The Score interface

A score is represented by the Score interface, which naturally extends Comparable:

public interface Score<...> extends Comparable<...> {

Chapter 5. Score calculation

90

 ...

}

The Score implementation to use depends on your use case. Your score might not efficiently fit in

a single double value. Planner has several build-in Score implementations, but you can implement

a custom Score too. Most use cases will just use the build-in HardSoftScore.

The Score implementation (for example HardSoftScore) must be the same throughout a Solver

runtime. The Score implementation is configured in the solver configuration as a ScoreDefinition:

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>

 ...

 </scoreDirectorFactory>

As for all calculations with a computer, choose the correct type. Don't use a double for financial

data.

Choose a Score definition

91

Based on your score constraints and score level requirements, you'll choose a certain

ScoreDefinition:

5.2. Choose a Score definition

Each Score implementation also has a ScoreDefinition implementation. For example:

SimpleScore is definied by SimpleScoreDefinition.

5.2.1. SimpleScore

A SimpleScore has a single int value, for example -123. It has a single score level.

 <scoreDirectorFactory>

 <scoreDefinitionType>SIMPLE</scoreDefinitionType>

 ...

 </scoreDirectorFactory>

Variants of this scoreDefinitionType:

Chapter 5. Score calculation

92

• SIMPLE_LONG: Uses SimpleLongScore which has a long value instead of an int value.

• SIMPLE_DOUBLE: Uses SimpleDoubleScore which has a double value instead of an int value.

• SIMPLE_BIG_DECIMAL: Uses SimpleBigDecimalScore which has a BigDecimal value instead

of an int value.

5.2.2. HardSoftScore (recommended)

A HardSoftScore has a hard int value and a soft int value, for example -123hard/-456soft.

It has 2 score levels (hard and soft).

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>

 ...

 </scoreDirectorFactory>

Variants of this scoreDefinitionType:

• HARD_SOFT_LONG: Uses HardSoftLongScore which has long values instead of int values.

• HARD_SOFT_DOUBLE: Uses HardSoftDoubleScore which has double values instead of int

values.

• HARD_SOFT_BIG_DECIMAL: Uses HardSoftBigDecimalScore which has BigDecimal values

instead of int values..

5.2.3. HardMediumSoftScore

A HardMediumSoftScore which has a hard int value, a medium int value and a soft int value,

for example -123hard/-456medium/-789soft. It has 3 score levels (hard, medium and soft).

 <scoreDirectorFactory>

 <scoreDefinitionType>HARD_MEDIUM_SOFT</scoreDefinitionType>

 ...

 </scoreDirectorFactory>

5.2.4. BendableScore

A BendableScore has a configurable number of score levels. It has an array of hard int

values and an array of soft int value, for example 2 hard levels and 3 soft levels for a score

-123/-456/-789/-012/-345. The number of hard and soft score levels needs to be set at

configuration time, it's not flexible to change during solving.

 <scoreDirectorFactory>

Implementing a custom Score

93

 <scoreDefinitionType>BENDABLE</scoreDefinitionType>

 <bendableHardLevelCount>2</bendableHardLevelCount>

 <bendableSoftLevelCount>3</bendableSoftLevelCount>

 ...

 </scoreDirectorFactory>

5.2.5. Implementing a custom Score

The ScoreDefinition interface defines the score representation.

To implement a custom Score, you'll also need to implement a custom ScoreDefinition.

Extend AbstractScoreDefinition (preferable by copy pasting HardSoftScoreDefinition or

SimpleScoreDefinition) and start from there.

Then hook your custom ScoreDefinition in your SolverConfig.xml:

 <scoreDirectorFactory>

 <scoreDefinitionClass>...MyScoreDefinition</scoreDefinitionClass>

 ...

 </scoreDirectorFactory>

5.3. Calculate the Score

5.3.1. Score calculation types

There are several ways to calculate the Score of a Solution:

• Simple Java score calculation: implement a single Java method

• Incremental Java score calculation: implement multiple Java methods

• Drools score calculation: implement score rules

Every score calculation type can use any Score definition. For example, simple Java score

calculation can output a HardSoftScore.

All score calculation types are Object Orientated and can reuse existing Java code.

Important

The score calculation should be read-only: it should not change the planning

entities or the problem facts in any way. For example, it must not call a setter

method on a planning entity in a Drools score rule's RHS. This does not apply to

logically inserted objects, which can be changed by the score rules who logically

inserted them in the first place.

Chapter 5. Score calculation

94

OptaPlanner will not recalculate the score of a Solution if it can predict it (unless

an environmentMode assertion is enabled). For example, after a winning step is

done, there is no need to calculate the score because that move was done and

undone earlier. As a result, there's no guarantee that such changes applied during

score calculation are actually done.

5.3.2. Simple Java score calculation

A simple way to implement your score calculation in Java.

• Advantages:

• Plain old Java: no learning curve

• Opportunity to delegate score calculation to an existing code base or legacy system

• Disadvantages:

• Slower and less scalable

• Because there is no incremental score calculation

Just implement one method of the interface SimpleScoreCalculator:

public interface SimpleScoreCalculator<Sol extends Solution> {

 Score calculateScore(Sol solution);

}

For example in n queens:

public class NQueensSimpleScoreCalculator implements SimpleScoreCalculator<NQueens> {

 public SimpleScore calculateScore(NQueens nQueens) {

 int n = nQueens.getN();

 List<Queen> queenList = nQueens.getQueenList();

 int score = 0;

 for (int i = 0; i < n; i++) {

 for (int j = i + 1; j < n; j++) {

 Queen leftQueen = queenList.get(i);

 Queen rightQueen = queenList.get(j);

 if (leftQueen.getRow() != null && rightQueen.getRow() != null) {

 if (leftQueen.getRowIndex() == rightQueen.getRowIndex()) {

 score--;

Incremental Java score calculation

95

 }

 if (leftQueen.getAscendingDiagonalIndex() == rightQueen.getAscendingDiagonalIndex()) {

 score--;

 }

 if (leftQueen.getDescendingDiagonalIndex() == rightQueen.getDescendingDiagonalIndex()) {

 score--;

 }

 }

 }

 }

 return SimpleScore.valueOf(score);

 }

}

Configure it in your solver configuration:

 <scoreDirectorFactory>

 <scoreDefinitionType>...</scoreDefinitionType>

 <simpleScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensSimpleScoreCalculator</

simpleScoreCalculatorClass>

 </scoreDirectorFactory>

Alternatively, build a SimpleScoreCalculator instance at runtime and set it with the

programmatic API:

 solverFactory.getSolverConfig().getScoreDirectorFactoryConfig.setSimpleScoreCalculator(simpleScoreCalculator);

5.3.3. Incremental Java score calculation

A way to implement your score calculation incrementally in Java.

• Advantages:

• Very fast and scalable

• Currently the fastest if implemented correctly

• Disadvantages:

• Hard to write

• A scalable implementation heavily uses maps, indexes, ... (things the Drools rule engine

can do for you)

Chapter 5. Score calculation

96

• You have to learn, design, write and improve all these performance optimizations yourself

• Hard to read

• Regular score constraint changes can lead to a high maintenance cost

Implement all the methods of the interface IncrementalScoreCalculator and extend the class

AbstractIncrementalScoreCalculator:

public interface IncrementalScoreCalculator<Sol extends Solution> {

 void resetWorkingSolution(Sol workingSolution);

 void beforeEntityAdded(Object entity);

 void afterEntityAdded(Object entity);

 void beforeAllVariablesChanged(Object entity);

 void afterAllVariablesChanged(Object entity);

 void beforeVariableChanged(Object entity, String variableName);

 void afterVariableChanged(Object entity, String variableName);

 void beforeEntityRemoved(Object entity);

 void afterEntityRemoved(Object entity);

 Score calculateScore();

}

For example in n queens:

public class NQueensAdvancedIncrementalScoreCalculator extends AbstractIncrementalScoreCalculator<NQueens> {

 private Map<Integer, List<Queen>> rowIndexMap;

 private Map<Integer, List<Queen>> ascendingDiagonalIndexMap;

 private Map<Integer, List<Queen>> descendingDiagonalIndexMap;

 private int score;

 public void resetWorkingSolution(NQueens nQueens) {

 int n = nQueens.getN();

 rowIndexMap = new HashMap<Integer, List<Queen>>(n);

Incremental Java score calculation

97

 ascendingDiagonalIndexMap = new HashMap<Integer, List<Queen>>(n * 2);

 descendingDiagonalIndexMap = new HashMap<Integer, List<Queen>>(n * 2);

 for (int i = 0; i < n; i++) {

 rowIndexMap.put(i, new ArrayList<Queen>(n));

 ascendingDiagonalIndexMap.put(i, new ArrayList<Queen>(n));

 descendingDiagonalIndexMap.put(i, new ArrayList<Queen>(n));

 if (i != 0) {

 ascendingDiagonalIndexMap.put(n - 1 + i, new ArrayList<Queen>(n));

 descendingDiagonalIndexMap.put((-i), new ArrayList<Queen>(n));

 }

 }

 score = 0;

 for (Queen queen : nQueens.getQueenList()) {

 insert(queen);

 }

 }

 public void beforeEntityAdded(Object entity) {

 // Do nothing

 }

 public void afterEntityAdded(Object entity) {

 insert((Queen) entity);

 }

 public void beforeAllVariablesChanged(Object entity) {

 retract((Queen) entity);

 }

 public void afterAllVariablesChanged(Object entity) {

 insert((Queen) entity);

 }

 public void beforeVariableChanged(Object entity, String variableName) {

 retract((Queen) entity);

 }

 public void afterVariableChanged(Object entity, String variableName) {

 insert((Queen) entity);

 }

 public void beforeEntityRemoved(Object entity) {

 retract((Queen) entity);

 }

 public void afterEntityRemoved(Object entity) {

 // Do nothing

 }

Chapter 5. Score calculation

98

 private void insert(Queen queen) {

 Row row = queen.getRow();

 if (row != null) {

 int rowIndex = queen.getRowIndex();

 List<Queen> rowIndexList = rowIndexMap.get(rowIndex);

 score -= rowIndexList.size();

 rowIndexList.add(queen);

 List<Queen> ascendingDiagonalIndexList = ascendingDiagonalIndexMap.get(queen.getAscendingDiagonalIndex());

 score -= ascendingDiagonalIndexList.size();

 ascendingDiagonalIndexList.add(queen);

 List<Queen> descendingDiagonalIndexList = descendingDiagonalIndexMap.get(queen.getDescendingDiagonalIndex());

 score -= descendingDiagonalIndexList.size();

 descendingDiagonalIndexList.add(queen);

 }

 }

 private void retract(Queen queen) {

 Row row = queen.getRow();

 if (row != null) {

 List<Queen> rowIndexList = rowIndexMap.get(queen.getRowIndex());

 rowIndexList.remove(queen);

 score += rowIndexList.size();

 List<Queen> ascendingDiagonalIndexList = ascendingDiagonalIndexMap.get(queen.getAscendingDiagonalIndex());

 ascendingDiagonalIndexList.remove(queen);

 score += ascendingDiagonalIndexList.size();

 List<Queen> descendingDiagonalIndexList = descendingDiagonalIndexMap.get(queen.getDescendingDiagonalIndex());

 descendingDiagonalIndexList.remove(queen);

 score += descendingDiagonalIndexList.size();

 }

 }

 public SimpleScore calculateScore() {

 return SimpleScore.valueOf(score);

 }

}

Configure it in your solver configuration:

 <scoreDirectorFactory>

 <scoreDefinitionType>...</scoreDefinitionType>

 <incrementalScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensAdvancedIncrementalScoreCalculator</

incrementalScoreCalculatorClass>

 </scoreDirectorFactory>

Drools score calculation

99

Optionally, to get better output when the IncrementalScoreCalculator is corrupted

in environmentMode FAST_ASSERT or FULL_ASSERT, you can overwrite the method

buildScoreCorruptionAnalysis from AbstractIncrementalScoreCalculator.

5.3.4. Drools score calculation

5.3.4.1. Overview

Implement your score calculation using the Drools rule engine. Every score constraint is written

as one or more score rules.

• Advantages:

• Incremental score calculation for free

• Because most DRL syntax uses forward chaining, it does incremental calculation without

any extra code

• Score constraints are isolated as separate rules

• Easy to add or edit existing score rules

• Flexibility to augment your score constraints by

• Defining them in decision tables

• Excel (XLS) spreadsheet

• Guvnor WebUI

• Translate them into natural language with DSL

• Store and release in the Guvnor repository

• Performance optimizations in future versions for free

• In every release, the Drools rule engine tends to become faster.

• Disadvantages:

• DRL learning curve

• Usage of DRL

• Polyglot fear can prohibit the use of a new language such as DRL in some organizations

5.3.4.2. Drools score rules configuration

There are several ways to define where your score rules live.

Chapter 5. Score calculation

100

5.3.4.2.1. A scoreDrl resource on the classpath

This is the easy way: the score rule live in a DRL file which is a resource on the classpath. Just

add your score rules *.drl file in the solver configuration:

 <scoreDirectorFactory>

 <scoreDefinitionType>...</scoreDefinitionType>

 <scoreDrl>/org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</

scoreDrl>

 </scoreDirectorFactory>

You can add multiple <scoreDrl> entries if needed, but normally you'll define all your score rules

in 1 file.

Optionally, you can also set drools configuration properties but beware of backwards compatibility

issues:

 <scoreDirectorFactory>

 ...

 <scoreDrl>/org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</

scoreDrl>

 <kieBaseConfigurationProperties>

 <drools.equalityBehavior>...</drools.equalityBehavior>

 </kieBaseConfigurationProperties>

 </scoreDirectorFactory>

5.3.4.2.2. A KieBase (possibly defined by Guvnor)

If you prefer to build the KieBase yourself or if you're combining Planner with Guvnor, you can set

the KieBase on the SolverFactory before building the Solver:

 solverFactory.getSolverConfig().getScoreDirectorFactoryConfig.setKieBase(kieBase);

5.3.4.3. Implementing a score rule

Here's an example of a score constraint implemented as a score rule in a DRL file:

rule "multipleQueensHorizontal"

 when

 Queen($id : id, row != null, $i : rowIndex)

 Queen(id > $id, rowIndex == $i)

 then

 scoreHolder.addConstraintMatch(kcontext, -1);

Drools score calculation

101

end

This score rule will fire once for every 2 queens with the same rowIndex. The (id > $id) condition

is needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A)

or (B, B). Let's take a closer look at this score rule on this solution of 4 queens:

In this solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A, B), (A, C),

(A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal

line, this solution will have a score of -6. An optimal solution of 4 queens has a score of 0.

Note

Notice that every score rule will relate to at least 1 planning entity class (directly or

indirectly though a logically inserted fact).

This is normal: it would be a waste of time to write a score rule that only relates to

problem facts, as the consequence will never change during planning, no matter

what the possible solution.

Note

The variable kcontext is a magic variable in Drools Expert. The scoreHolder's

method uses it to do incremental score calculation correctly and to create a

ConstraintMatch instance.

5.3.4.4. Weighing score rules

A ScoreHolder instance is asserted into the KieSession as a global called scoreHolder. Your

score rules need to (directly or indirectly) update that instance.

global SimpleScoreHolder scoreHolder;

rule "multipleQueensHorizontal"

 when

Chapter 5. Score calculation

102

 Queen($id : id, row != null, $i : rowIndex)

 Queen(id > $id, rowIndex == $i)

 then

 scoreHolder.addConstraintMatch(kcontext, -1);

end

// multipleQueensVertical is obsolete because it is always 0

rule "multipleQueensAscendingDiagonal"

 when

 Queen($id : id, row != null, $i : ascendingDiagonalIndex)

 Queen(id > $id, ascendingDiagonalIndex == $i)

 then

 scoreHolder.addConstraintMatch(kcontext, -1);

end

rule "multipleQueensDescendingDiagonal"

 when

 Queen($id : id, row != null, $i : descendingDiagonalIndex)

 Queen(id > $id, descendingDiagonalIndex == $i)

 then

 scoreHolder.addConstraintMatch(kcontext, -1);

end

Most use cases will also weigh their constraint types or even their matches differently, by using

a specific weight for each constraint match.

Here's an example from CurriculumCourse, where assigning a Lecture to a Room which is missing

2 seats is weighted equally bad as having 1 isolated Lecture in a Curriculum:

global HardSoftScoreHolder scoreHolder;

// RoomCapacity: For each lecture, the number of students that attend the course

 must be less or equal

// than the number of seats of all the rooms that host its lectures.

// Each student above the capacity counts as 1 point of penalty.

rule "roomCapacity"

 when

 $room : Room($capacity : capacity)

 $lecture : Lecture(room == $room, studentSize > $capacity, $studentSize :

 studentSize)

 then

 scoreHolder.addSoftConstraintMatch(kcontext, ($capacity - $studentSize));

end

// CurriculumCompactness: Lectures belonging to a curriculum should be adjacent

// to each other (i.e., in consecutive periods).

Detecting invalid scores

103

// For a given curriculum we account for a violation every time there is one

 lecture not adjacent

// to any other lecture within the same day.

// Each isolated lecture in a curriculum counts as 2 points of penalty.

rule "curriculumCompactness"

 when

 ...

 then

 scoreHolder.addSoftConstraintMatch(kcontext, -2);

end

5.3.5. Detecting invalid scores

Put the environmentMode in FULL_ASSERT (or FAST_ASSERT) to detect corruption in the

incremental score calculation. For more information, see the section about environmentMode.

However, that will not verify that your score calculator implements your score constraints as your

business actually desires.

A piece of incremental score calculator code can be difficult to write and to review. Assert its

correctness by using a different implementation (for example a SimpleScoreCalculator) to do

the assertions triggered by the environmentMode. Just configure the different implementation as

a assertionScoreDirectorFactory:

 <environmentMode>FAST_ASSERT</environmentMode>

 ...

 <scoreDirectorFactory>

 <scoreDefinitionType>...</scoreDefinitionType>

 <scoreDrl>/org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</

scoreDrl>

 <assertionScoreDirectorFactory>

 <simpleScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensSimpleScoreCalculator</

simpleScoreCalculatorClass>

 </assertionScoreDirectorFactory>

 </scoreDirectorFactory>

This way, the scoreDrl will be validated by the SimpleScoreCalculator.

5.4. Score calculation performance tricks

5.4.1. Overview

The Solver will normally spend most of its execution time running the score calculation (which is

called in its deepest loops). Faster score calculation will return the same solution in less time with

the same algorithm, which normally means a better solution in equal time.

Chapter 5. Score calculation

104

5.4.2. Average calculation count per second

After solving a problem, the Solver will log the average calculation count per second. This

is a good measurement of Score calculation performance, despite that it is affected by non

score calculation execution time. It depends on the problem scale of the problem dataset.

Normally, even for high scale problems, it is higher than 1000, except when you're using

SimpleScoreCalculator.

Important

When improving your score calculation, focus on maximizing the average

calculation count per second, instead of maximizing the best score. A big

improvement in score calculation can sometimes yield little or no best score

improvement, for example when the algorithm is stuck in a local or global optima.

If you're watching the calculation count instead, score calculation improvements

are far more visible.

Furthermore, watching the calculation count, allows you to remove or add score

constraints, and still compare it with the original calculation count. Comparing the

best score with the original would be wrong, because it's comparing apples and

oranges.

5.4.3. Incremental score calculation (with delta's)

When a Solution changes, incremental score calculation (AKA delta based score calculation),

will calculate the delta with the previous state to find the new Score, instead of recalculating the

entire score on every solution evaluation.

For example, if a single queen A moves from row 1 to 2, it won't bother to check if queen B and

C can attack each other, since neither of them changed.

Avoid calling remote services during score calculation

105

Figure 5.1. Incremental score calculation for the 4 queens puzzle

This is a huge performance and scalability gain. Drools score calculation gives you this huge

scalability gain without forcing you to write a complicated incremental score calculation

algorithm. Just let the Drools rule engine do the hard work.

Notice that the speedup is relative to the size of your planning problem (your n), making

incremental score calculation far more scalable.

5.4.4. Avoid calling remote services during score calculation

Do not call remote services in your score calculation (except if you're bridging

SimpleScoreCalculator to a legacy system). The network latency will kill your score calculation

performance. Cache the results of those remote services if possible.

If some parts of a constraint can be calculated once, when the Solver starts, and never change

during solving, then turn them into cached problem facts.

5.4.5. Unused constraint

If you know a certain constraint can never be broken, don't bother writing a score constraint for

it. For example in n queens, the score calculation doesn't check if multiple queens occupy the

same column, because a Queen's column never changes and every Solution starts with each

Queen on a different column.

Chapter 5. Score calculation

106

Note

Don't go overboard with this. If some datasets don't use a specific constraint but

others do, just return out of the constraint as soon as you can. There is no need to

dynamically change your score calculation based on the dataset.

5.4.6. Build-in hard constraint

Instead of implementing a hard constraint, you can sometimes make it build-in too. For example: If

Course A should never be assigned to Room X, but it uses ValueRange from Solution, the Solver

will often try to assign it to Room X too (only to find out that it breaks a hard constraint). Use filtered

selection to define that Course A should only be assigned a Room other than X.

This tends to give a good performance gain, not just because the score calculation is faster, but

mainly because most optimization algorithms will spend less time evaluating unfeasible solutions.

Note

Don't go overboard with this. Many optimization algorithms rely on the freedom to

break hard constraints when changing planning entities, to get out of local optima.

There is a real risk of trading short term benefits for long term harm.

5.4.7. Other performance tricks

• Verify that your score calculation happens in the correct Number type. If you're making the sum

of int values, don't let Drools sum it in a double which takes longer.

• For optimal performance, always use server mode (java -server). We have seen performance

increases of 50% by turning on server mode.

• For optimal performance, use the latest Java version. For example, in the past we have seen

performance increases of 30% by switching from java 1.5 to 1.6.

• Always remember that premature optimization is the root of all evil. Make sure your design is

flexible enough to allow configuration based tweaking.

5.4.8. Score trap

Make sure that none of your score constraints cause a score trap. A trapped score constraint

uses the same weight for different constraint matches, when it could just as easily use a different

weight. It effectively lumps its constraint matches together, which creates a flatlined score function

for that constraint. This can cause a solution state in which several moves need to be done to

resolve or lower the weight of that single constraint. Some examples of score traps:

Score trap

107

• If you need 2 doctors at each table, but you're only moving 1 doctor at a time. So the solver has

no incentive to move a doctor to a table with no doctors. Punish a table with no doctors more

then a table with only 1 doctor in that score constraint in the score function.

• 2 exams needs to be conducted at the same time, but you're only move 1 exam at a time. So

the solver has a disincentive move one of those exams to another timeslot without moving the

other in the same move. Add a course-grained move that moves both exams at the same time.

For example, consider this score trap. If the blue item moves from an overloaded computer to an

empty computer, the hard score should improve. The trapped score implementation fails to do that:

The Solver should eventually get out of this trap, but it will take a lot of effort (especially if there

are even more processes on the overloaded computer). Before they do that, they might actually

start moving more processes into that overloaded computer, as there is no penalty for doing so.

Note

Avoiding score traps does not mean that your score function should be smart

enough to avoid local optima. Leave it to the optimization algorithms to deal with

the local optima.

Chapter 5. Score calculation

108

Avoiding score traps means to avoid - for each score constraint individually - a

flatlined score function.

Important

Always specify the degree of infeasibility. The business will often say: "if the

solution is infeasible, it doesn't matter how infeasible it." While that's true for the

business, it's not true for score calculation: it benefits from knowing how infeasible

it is. In practice, soft constraints usually do this naturally and it's just a matter of

doing it for the hard constraints too.

There are several ways to deal with a score trap:

• Improve the score constraint to make a distinction in the score weight. For example: penalize

-1hard for every missing CPU, instead of just -1hard if any CPU is missing.

• If changing the score constraint is not allowed from the business perspective, add a lower score

level with a score constraint that makes such a distinction. For example: penalize -1subsoft for

every missing CPU, on top of -1hard if any CPU is missing. The business ignores the subsoft

score level.

• Add course-grained moves and union select them with the existing fine-grained moves. A

course-grained move effectively does multiple moves to directly get out of a score trap with a

single move. For example: move multiple items from the same container to another container.

5.4.9. stepLimit benchmark

Not all score constraints have the same performance cost. Sometimes 1 score constraint can kill

the score calculation performance outright. Use the benchmarker to do a 1 minute run and check

what happens to the average calculation count per second if you comment out all but 1 of the

score constraints.

5.5. Reusing the score calculation outside the Solver

Other parts of your application, for example your webUI, might need to calculate the score too.

Do that by reusing the ScoreDirectorFactory of the Solver to build a separate ScoreDirector

for that webUI:

ScoreDirectorFactory scoreDirectorFactory = solver.getScoreDirectorFactory();

ScoreDirector guiScoreDirector = scoreDirectorFactory.buildScoreDirector();

Then use it when you need to calculate the Score of a Solution:

Reusing the score calculation outside the Solver

109

guiScoreDirector.setWorkingSolution(solution);

Score score = guiScoreDirector.calculateScore();

Tto explain in the GUI what entities are causing which part of the Score, get the ConstraintMatch

objects from the ScoreDirector.

110

Chapter 6.

111

Chapter 6. Optimization algorithms

6.1. Search space size in the real world

The number of possible solutions for a planning problem can be mind blowing. For example:

• 4 queens has 256 possible solutions (4 ^ 4) and 2 optimal solutions.

• 5 queens has 3125 possible solutions (5 ^ 5) and 1 optimal solution.

• 8 queens has 16777216 possible solutions (8 ^ 8) and 92 optimal solutions.

• 64 queens has more than 10^115 possible solutions (64 ^ 64).

• Most real-life planning problems have an incredible number of possible solutions and only 1 or

a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10^80). As a planning

problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning

entity or planning value can heavily multiply the running time of some algorithms.

An algorithm that checks every possible solution (even with pruning) can easily run for billions of

years on a single real-life planning problem. What we really want is to find the best solution in

the limited time at our disposal. Planning competitions (such as the International Timetabling

Competition) show that local search variations (tabu search, simulated annealing, ...) usually

perform best for real-world problems given real-world time limitations.

6.2. Does Planner find the optimal solution?

The business wants the optimal solution, but they also have other requirements:

• Scale out: Large production datasets must not crash and have good results too.

• Optimize the right problem: The constraints must match the actual business needs.

• Available time: The solution must be found in time, before it becomes useless to execute.

• Reliability: Every dataset must have at least a decent result (better than a human planner).

Given these requirements, and despite the promises of some salesmen, it's usually impossible

for anyone or anything to find the optimal solution. Therefore, Planner focuses on finding the best

solution in available time. In realistic, independent competitions, Planner often comes out as the

best reusable software.

The nature of NP-complete problems make scaling a prime concern. The result quality of a small

dataset guarantees nothing about the result quality of a large dataset. Scaling problems

Chapter 6. Optimization algor...

112

cannot be mitigated by hardware purchases. Start testing with a production sized dataset as soon

as possible. Don't asses quality on small datasets (unless production encounters such datasets).

Instead, solve a production sized dataset and compare with the results of longer execution,

different algorithms and - if available - the human planner.

6.3. Architecture overview

OptaPlanner is the first framework to combine optimization algorithms (metaheuristics, ...) with

score calculation by a rule engine such as Drools Expert. This combination turns out to be a very

efficient, because:

• A rule engine such as Drools Expert is great for calculating the score of a solution of a planning

problem. It makes it easy and scalable to add additional soft or hard constraints such as "a

teacher shouldn't teach more then 7 hours a day". It does delta based score calculation without

any extra code. However it tends to be not suitable to actually find new solutions.

• An optimization algorithm is great at finding new improving solutions for a planning problem,

without necessarily brute-forcing every possibility. However it needs to know the score of a

solution and offers no support in calculating that score efficiently.

Optimization algorithms overview

113

6.4. Optimization algorithms overview

Table 6.1. Optimization algorithms overview

Algorithm Scalable? Optimal? Easy

to use?

Tweakable?Requires

CH?

Exact algorithms

 Brute force 0/5 5/5 5/5 0/5 No

 Branch and bound 0/5 5/5 4/5 1/5 No

Construction heuristics (CH)

 First Fit 5/5 1/5 5/5 1/5 No

 First Fit Decreasing 5/5 2/5 4/5 2/5 No

 Best Fit 5/5 2/5 4/5 2/5 No

 Best Fit Decreasing 5/5 2/5 4/5 2/5 No

 Cheapest Insertion 3/5 2/5 5/5 2/5 No

Metaheuristics (MH)

 Local search

 Hill-climbing 5/5 2/5 4/5 3/5 Yes

 Tabu search 5/5 4/5 3/5 5/5 Yes

 Simulated annealing 5/5 4/5 2/5 5/5 Yes

 Late acceptance 5/5 4/5 3/5 5/5 Yes

 Evolutionary algorithms

 Evolutionary strategies 4/5 3/5 ?/5 ?/5 Yes

 Genetic algorithms 4/5 3/5 ?/5 ?/5 Yes

If you want to learn more about metaheuristics, read the free book Essentials of

Metaheuristics [http://www.cs.gmu.edu/~sean/book/metaheuristics/] or Clever Algorithms [http://

www.cleveralgorithms.com/].

6.5. Which optimization algorithms should I use?

The best optimization algorithms configuration for your use case depends heavily on your use

case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration,

probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

1. First Fit

Next, implement planning entity difficulty comparison and turn it into:

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/
http://www.cleveralgorithms.com/

Chapter 6. Optimization algor...

114

1. First Fit Decreasing

Next, implement moves and add tabu search behind it:

1. First Fit Decreasing

2. Tabu search (use planning entity tabu)

At this point the free lunch is over. The return on invested time lowers. The result is probably

already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a

couple of simulated annealing configurations:

1. First Fit Decreasing

2. Simulated annealing (try several starting temperatures)

And combine them with tabu search:

1. First Fit Decreasing

2. Simulated annealing (relatively long time)

3. Tabu search (relatively short time)

If you have time, continue experimenting even further. Blog about your experiments!

6.6. SolverPhase

A Solver can use multiple optimization algorithms in sequence. Each optimization algorithm is

represented by a SolverPhase. There is never more than 1 SolverPhase solving at the same

time.

Note

Some SolverPhase implementations can combine techniques from multiple

optimization algorithms, but they are still just 1 SolverPhase. For example: a local

search SolverPhase can do simulated annealing with planning entity tabu.

Here's a configuration that runs 3 phases in sequence:

<solver>

 ...

 <constructionHeuristic>

 ... <!-- First phase: First Fit decreasing -->

SolverPhase

115

 </constructionHeuristic>

 <localSearch>

 ... <!-- Second phase: Simulated annealing -->

 </localSearch>

 <localSearch>

 ... <!-- Third phase: Tabu search -->

 </localSearch>

</solver>

The solver phases are run in the order defined by solver configuration. When the first phase

terminates, the second phase starts, and so on. When the last phase terminates, the Solver

terminates. Usually, a solver will first run a construction heuristic and then run 1 or multiple

metaheuristics:

Some phases (especially construction heuristics) will terminate automatically. Other phases

(especially metaheuristics) will only terminate if the phase is configured to terminate:

<solver>

 ...

Chapter 6. Optimization algor...

116

 <termination><!-- Solver termination -->

 <maximumSecondsSpend>90</maximumSecondsSpend>

 </termination>

 <localSearch>

 <termination><!-- Phase termination -->

 <maximumSecondsSpend>60</maximumSecondsSpend><!-- Give the next phase a

 chance to run too, before the Solver terminates -->

 </termination>

 ...

 </localSearch>

 <localSearch>

 ...

 </localSearch>

</solver>

If the Solver terminates (before the last phase terminates itself), the current phase is terminated

and all subsequent phases won't run.

6.7. Scope overview

A solver will iteratively run phases. Each phase will usually iteratively run steps. Each step, in turn,

usually iteratively runs moves. These form 4 nested scopes: solver, phase, step and move.

Termination

117

Configure logging to display the log messages of each scope.

6.8. Termination

Not all phases terminate automatically and sometimes you don't want to wait that long anyway.

A Solver can be terminated synchronously by up-front configuration or asynchronously from

another thread.

Especially metaheuristic phases will need to be told when to stop solving. This can be because

of a number of reasons: the time is up, the perfect score has been reached, ... The only thing you

can't depend on, is on finding the optimal solution (unless you know the optimal score), because

a metaheuristic algorithm generally doesn't know it when it finds the optimal solution. For real-life

problems this doesn't turn out to be much of a problem, because finding the optimal solution could

take billions of years, so you 'll want to terminate sooner anyway. The only thing that matters is

finding the best solution in the available time.

For synchronous termination, configure a Termination on a Solver or a SolverPhase when

it needs to stop. You can implement your own Termination, but the build-in implementations

should suffice for most needs. Every Termination can calculate a time gradient (needed for

Chapter 6. Optimization algor...

118

some optimization algorithms), which is a ratio between the time already spend solving and the

estimated entire solving time of the Solver or SolverPhase.

6.8.1. TimeMillisSpendTermination

Terminates when an amount of time has been reached:

 <termination>

 <maximumTimeMillisSpend>500</maximumTimeMillisSpend>

 </termination>

 <termination>

 <maximumSecondsSpend>10</maximumSecondsSpend>

 </termination>

 <termination>

 <maximumMinutesSpend>5</maximumMinutesSpend>

 </termination>

 <termination>

 <maximumHoursSpend>1</maximumHoursSpend>

 </termination>

Note

If you use this Termination, you will most likely sacrifice perfect reproducibility

(even with environmentMode REPRODUCIBLE) because of an available CPU time

difference:

• The available CPU time influences the number of steps that can be taken, which

might be a few more or less.

• The Termination might produce slightly different time gradient values, which

will send time gradient based algorithms (such as simulated annealing) on a

radically different path.

ScoreAttainedTermination

119

6.8.2. ScoreAttainedTermination

Terminates when a certain score has been reached. You can use this Termination if you know

the perfect score, for example for 4 queens:

 <termination>

 <scoreAttained>0</scoreAttained>

 </termination>

For a planning problem with hard and soft constraints, it could look like this:

 <termination>

 <scoreAttained>0hard/-5000soft</scoreAttained>

 </termination>

You can use this Termination to terminate once it reaches a feasible solution.

6.8.3. StepCountTermination

Terminates when an amount of steps has been reached:

 <termination>

 <maximumStepCount>100</maximumStepCount>

 </termination>

This Termination can only be used for a SolverPhase, not for the Solver itself.

6.8.4. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

 <termination>

 <maximumUnimprovedStepCount>100</maximumUnimprovedStepCount>

 </termination>

If the score hasn't improved recently, it's probably not going to improve soon anyway and it's not

worth the effort to continue. We have observed that once a new best solution is found (even after

a long time of no improvement on the best solution), the next few steps tend to improve the best

solution too.

This Termination can only be used for a SolverPhase, not for the Solver itself.

Chapter 6. Optimization algor...

120

6.8.5. Combining multiple Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been

reached:

 <termination>

 <terminationCompositionStyle>OR</terminationCompositionStyle>

 <maximumStepCount>100</maximumStepCount>

 <scoreAttained>0</scoreAttained>

 </termination>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least

-100 and no improvements in 5 steps:

 <termination>

 <terminationCompositionStyle>AND</terminationCompositionStyle>

 <maximumUnimprovedStepCount>5</maximumUnimprovedStepCount>

 <scoreAttained>-100</scoreAttained>

 </termination>

This example ensures it doesn't just terminate after finding a feasible solution, but also completes

any obvious improvements on that solution before terminating.

6.8.6. Asynchronous termination from another thread

Sometimes you'll want to terminate a Solver early from another thread, for example because a

user action or a server restart. This cannot be configured by a Termination as it's impossible to

predict when and if it will occur. Therefore the Solver interface has these 2 thread-safe methods:

public interface Solver {

 // ...

 boolean terminateEarly();

 boolean isTerminateEarly();

}

If you call the terminateEarly() method from another thread, the Solver will terminate at its

earliest convenience and the solve() method will return in the original Solver thread.

SolverEventListener

121

6.9. SolverEventListener

Each time a new best solution is found, the Solver fires a BestSolutionChangedEvent.

To listen to such events, add a SolverEventListener to the Solver:

public interface Solver {

 // ...

 void addEventListener(SolverEventListener eventListener);

 void removeEventListener(SolverEventListener eventListener);

}

6.10. Custom SolverPhase

Between phases or before the first phase, you might want to execute a custom action on the

Solution to get a better score. Yet you'll still want to reuse the score calculation. For example, to

implement a custom construction heuristic without implementing an entire SolverPhase.

Note

Most of the time, a custom construction heuristic is not worth the hassle. The

supported constructions heuristics are configurable (so you can tweak them with

the Benchmarker), Termination aware and support partially initialized solutions

too.

Implement the CustomSolverPhaseCommand interface:

public interface CustomSolverPhaseCommand {

 void changeWorkingSolution(ScoreDirector scoreDirector);

}

For example:

public class ExaminationSolutionInitializer implements CustomSolverPhaseCommand {

 public void changeWorkingSolution(ScoreDirector scoreDirector) {

 Examination examination = (Examination) scoreDirector.getWorkingSolution();

Chapter 6. Optimization algor...

122

 for (Exam exam : examination.getExamList()) {

 Score unscheduledScore = scoreDirector.calculateScore();

 ...

 for (Period period : examination.getPeriodList()) {

 scoreDirector.beforeVariableChanged(exam, "period");

 exam.setPeriod(period)

 scoreDirector.afterVariableChanged(exam, "period");

 Score score = scoreDirector.calculateScore();

 ...

 }

 ...

 }

 }

}

Warning

Any change on the planning entities in a CustomSolverPhaseCommand must be

notified to the ScoreDirector.

Warning

Do not change any of the planning facts in a CustomSolverPhaseCommand. That

will corrupt the Solver because any previous score or solution was for a different

problem. If you want to do that, see repeated planning and real-time planning

instead.

And configure it like this:

<solver>

 ...

 <customSolverPhase>

 <customSolverPhaseCommandClass>org.optaplanner.examples.examination.solver.solution.initializer.ExaminationSolutionInitializer</

customSolverPhaseCommandClass>

 </customSolverPhase>

 ... <!-- Other phases -->

</solver>

It's possible to configure multiple customSolverPhaseCommandClass instances, which will be run

in sequence.

Custom SolverPhase

123

Important

If the changes of a CustomSolverPhaseCommand don't result in a better score,

the best solution won't be changed (so effectively nothing will have changed for

the next SolverPhase or CustomSolverPhaseCommand). To force such changes

anyway, use forceUpdateBestSolution:

 <customSolverPhase>

 <customSolverPhaseCommandClass>...MyUninitializer</

customSolverPhaseCommandClass>

 <forceUpdateBestSolution>true</forceUpdateBestSolution>

 </customSolverPhase>

Note

If the Solver or SolverPhase wants to terminate while a

CustomSolverPhaseCommand is still running, it will wait to terminate until the

CustomSolverPhaseCommand is done, however long that takes.

124

Chapter 7.

125

Chapter 7. Move and neighborhood

selection

7.1. Move and neighborhood introduction

7.1.1. What is a Move?

A Move is a change (or set of changes) from a solution A to a solution B. For example, the move

below changes queen C from row 0 to row 2:

The new solution is called a neighbor of the original solution, because it can be reached in a single

Move. Although a single move can change multiple queens, the neighbors of a solution should

always be a very small subset of all possible solutions. For example, on that original solution,

these are all possible changeMove's:

If we ignore the 4 changeMove's that have not impact and are therefore not doable, we can see

that number of moves is n * (n - 1) = 12. This is far less than the number of possible solutions,

which is n ^ n = 256. As the problem scales out, the number of possible moves increases far

less than the number of possible solutions.

Yet, in 4 changeMove's or less we can reach any solution. For example we can reach a very

different solution in 3 changeMove's:

Chapter 7. Move and neighborh...

126

Note

There are many other types of moves besides changeMove's. Many move types

are included out-of-the-box, but you can also implement custom moves.

A Move can affect multiple entities or even create/delete entities. But it must not

change the problem facts.

All optimization algorithms use Move's to transition from one solution to a neighbor solution.

Therefor, all the optimization algorithms are confronted with Move selection: the craft of creating

and iterating moves efficiently and the art of finding the most promising subset of random moves

to evaluate first.

7.1.2. What is a MoveSelector?

A MoveSelector's main function is to create Iterator<Move> when needed. An optimization

algorithm will iterate through a subset of those moves.

Here's an example how to configure a changeMoveSelector for the optimization algorithm Local

Search:

 <localSearch>

 <changeMoveSelector/>

 ...

 </localSearch>

Out of the box, this works and all properties of the changeMoveSelector are defaulted sensibly

(unless that fails fast due to ambiguity). On the other hand, the configuration can be customized

significantly for specific use cases. For example: you want want to configure a filter to discard

pointless moves.

7.1.3. Subselecting of entities, values and other moves

To create a Move, we need to select 1 or more planning entities and/or planning values to

move. Just like MoveSelectors, EntitySelectors and ValueSelectors need to support a similar

Subselecting of entities, values and other moves

127

feature set (such as scalable just-in-time selection). Therefor, they implement a common interface

Selector and they are configured similarly.

A MoveSelector is often composed out of EntitySelectors, ValueSelectors or even other

MoveSelectors, which can be configured individually if desired:

 <unionMoveSelector>

 <changeMoveSelector>

 <entitySelector>

 ...

 </entitySelector>

 <valueSelector>

 ...

 </valueSelector>

 ...

 </changeMoveSelector>

 ...

 </unionMoveSelector>

Together, this structure forms a Selector tree:

Chapter 7. Move and neighborh...

128

The root of this tree is a MoveSelector which is injected into the optimization algorithm

implementation to be (partially) iterated in every step.

7.2. General Selector features

7.2.1. CacheType: Create moves ahead of time or Just In Time

A Selector's cacheType determines when a selection (such as a Move, an entity, a value, ...) is

created and how long it lives.

Almost every Selector supports setting a cacheType:

 <changeMoveSelector>

 <cacheType>PHASE</cacheType>

 ...

 </changeMoveSelector>

The following cacheTypes are supported:

SelectionOrder: original, sorted, random, shuffled or probabilistic

129

• JUST_IN_TIME (default): Not cached. Construct each selection (Move, ...) just before it's used.

This scales up well in memory footprint.

• STEP: Cached. Create each selection (Move, ...) at the beginning of a step and cache them in a

list for the remainder of the step. This scales up badly in memory footprint.

• PHASE: Cached. Create each selection (Move, ...) at the beginning of a SolverPhase and cache

them in a list for the remainder of the SolverPhase. Some selections cannot be phase cached

because the list changes every step. This scales up badly in memory footprint, but has a slight

performance gain.

• SOLVER: Cached. Create each selection (Move, ...) at the beginning of a Solver and cache them

in a list for the remainder of the Solver. Some selections cannot be solver cached because the

list changes every step. This scales up badly in memory footprint, but has a slight performance

gain.

A cacheType can be set on composite selectors too:

 <unionMoveSelector>

 <cacheType>PHASE</cacheType>

 <changeMoveSelector/>

 <swapMoveSelector/>

 ...

 </unionMoveSelector>

Nested selectors of a cached selector cannot be configured to be cached themselves, unless it's

a higher cacheType. For example: a STEP cached unionMoveSelector can hold a PHASE cached

changeMoveSelector, but not a STEP cached changeMoveSelector.

7.2.2. SelectionOrder: original, sorted, random, shuffled or

probabilistic

A Selector's selectionOrder determines the order in which the selections (such as Moves,

entities, values, ...) are iterated. An optimization algorithm will usually only iterate through a subset

of its MoveSelector's selections, starting from the start, so the selectionOrder is critical to

decide which Moves are actually evaluated.

Almost every Selector supports setting a selectionOrder:

 <changeMoveSelector>

 ...

 <selectionOrder>RANDOM</selectionOrder>

 ...

 </changeMoveSelector>

Chapter 7. Move and neighborh...

130

The following selectionOrders are supported:

• ORIGINAL: Select the selections (Moves, entities, values, ...) in default order. Each selection will

be selected only once.

• For example: A0, A1, A2, A3, ..., B0, B1, B2, B3, ..., C0, C1, C2, C3, ...

• SORTED: Select the selections (Moves, entities, values, ...) in sorted order. Each selection will

be selected only once. Requires cacheType >= STEP. Mostly used on an entitySelector or

valueSelector for construction heuristics. See sorted selection.

• For example: A0, B0, C0, ..., A2, B2, C2, ..., A1, B1, C1, ...

• RANDOM (default): Select the selections (Moves, entities, values, ...) in non-shuffled random

order. A selection might be selected multiple times. This scales up well in performance because

it does not require caching.

• For example: C2, A3, B1, C2, A0, C0, ...

• SHUFFLED: Select the selections (Moves, entities, values, ...) in shuffled random order. Each

selection will be selected only once. Requires cacheType >= STEP. This scales up badly

in performance, not just because it requires caching, but also because a random number is

generated for each element, even if it's not selected (which is the grand majority when scaling

up).

• For example: C2, A3, B1, A0, C0, ...

• PROBABILISTIC: Select the selections (Moves, entities, values, ...) in random order, based

on the selection probability of each element. A selection with a higher probability has a

higher chance to be selected than elements with a lower probability. A selection might be

selected multiple times. Requires cacheType >= STEP. Mostly used on an entitySelector or

valueSelector. See probabilistic selection.

• For example: B1, B1, A1, B2, B1, C2, B1, B1, ...

A selectionOrder can be set on composite selectors too.

Note

When a Selector is cached, all of its nested Selectors will naturally default

to selectionOrder ORIGINAL. Avoid overwriting the selectionOrder of those

nested Selectors.

Recommended combinations of CacheType and SelectionOrder

131

7.2.3. Recommended combinations of CacheType and SelectionOrder

7.2.3.1. Just in time random selection (default)

This combination is great for big use cases (10 000 entities or more), as it scales up well in memory

footprint and performance. Other combinations are often not even viable on such sizes. It works for

smaller use cases too, so it's a good way to start out. It's the default, so this explicit configuration

of cacheType and selectionOrder is actually obsolete:

 <unionMoveSelector>

 <cacheType>JUST_IN_TIME</cacheType>

 <selectionOrder>RANDOM</selectionOrder>

 <changeMoveSelector/>

 <swapMoveSelector/>

 </unionMoveSelector>

Here's how it works. When Iterator<Move>.next() is called, a child MoveSelector is randomly

selected (1), which creates a random Move is created (2, 3, 4) and is then returned (5):

Chapter 7. Move and neighborh...

132

Notice that it never creates a list of Moves and it generates random numbers only for Moves that

are actually selected.

7.2.3.2. Cached shuffled selection

This combination often wins for small and medium use cases (5000 entities or less). Beyond that

size, it scales up badly in memory footprint and performance.

 <unionMoveSelector>

 <cacheType>PHASE</cacheType>

 <selectionOrder>SHUFFLED</selectionOrder>

 <changeMoveSelector/>

 <swapMoveSelector/>

 </unionMoveSelector>

Here's how it works: At the start of the phase (or step depending on the cacheType), all moves are

created (1) and cached (2). When MoveSelector.iterator() is called, the moves are shuffled

(3). When Iterator<Move>.next() is called, the next element in the shuffled list is returned (4):

Filtered selection

133

Notice that each Move will only be selected once, even though they are selected in random order.

Use cacheType PHASE if none of the (possibly nested) Selectors require STEP. Otherwise, do

something like this:

 <unionMoveSelector>

 <cacheType>STEP</cacheType>

 <selectionOrder>SHUFFLED</selectionOrder>

 <changeMoveSelector>

 <cacheType>PHASE</cacheType>

 </changeMoveSelector>

 <swapMoveSelector/>

 <cacheType>PHASE</cacheType>

 </swapMoveSelector>

 <pillarSwapMoveSelector/><!-- Does not support cacheType PHASE -->

 </unionMoveSelector>

7.2.3.3. Cached random selection

This combination is often a worthy competitor for medium use cases, especially with fast stepping

optimization algorithms (such as simulated annealing). Unlike cached shuffled selection, it doesn't

waste time shuffling the move list at the beginning of every step.

 <unionMoveSelector>

 <cacheType>PHASE</cacheType>

 <selectionOrder>RANDOM</selectionOrder>

 <changeMoveSelector/>

 <swapMoveSelector/>

 </unionMoveSelector>

7.2.4. Filtered selection

There are certain moves that you don't want to select, because:

• The move is pointless and would only waste CPU time. For example, swapping 2 lectures of

the same course will result in the same score and the same schedule because all lectures of 1

course are interchangeable (same teacher, same students, same topic).

• Doing the move would break a build-in hard constraint, so the solution would be infeasible but

the score function doesn't check build-in hard constraints (for performance gain). For example,

don't change a gym lecture to a room which is not a gym room.

Chapter 7. Move and neighborh...

134

• Note that any build-in hard constraint must usually be filtered on every move type. For

example, don't swap the room of a gym lecture with another lecture if the other lecture's

original room isn't a gym room.

Filtered selection can happen on any Selector in the selector tree, including any MoveSelector,

EntitySelector or ValueSelector. It works with any kind of cacheType and selectionOrder.

Filtering uses the interface SelectionFilter:

public interface SelectionFilter<T> {

 boolean accept(ScoreDirector scoreDirector, T selection);

}

Implement the method accept to return false on a discarded selection. Unaccepted moves will

not be selected and will therefore never have their method doMove called.

Sorted selection

135

public class DifferentCourseSwapMoveFilter implements SelectionFilter<SwapMove> {

 public boolean accept(ScoreDirector scoreDirector, SwapMove move) {

 Lecture leftLecture = (Lecture) move.getLeftEntity();

 Lecture rightLecture = (Lecture) move.getRightEntity();

 return !leftLecture.getCourse().equals(rightLecture.getCourse());

 }

}

Apply the filter on the lowest level possible. In most cases, you 'll need to know both the entity

and the value involved and you'll have to apply a filterClass on the moveSelector:

 <swapMoveSelector>

 <filterClass>org.optaplanner.examples.curriculumcourse.solver.move.DifferentCourseSwapMoveFilter</

filterClass>

 </swapMoveSelector>

But if possible, apply it on a lower levels, such as a filterClass on the entitySelector or

valueSelector:

 <changeMoveSelector>

 <entitySelector>

 <filterClass>...EntityFilter</filterClass>

 </entitySelector>

 </changeMoveSelector>

You can configure multiple filterClass elements on a single selector.

7.2.5. Sorted selection

Sorted selection can happen on any Selector in the selector tree, including any MoveSelector,

EntitySelector or ValueSelector. It does not work with cacheType JUST_IN_TIME and it only

works with selectionOrder SORTED.

It's mostly used in construction heuristics.

7.2.5.1. Sorted selection by Comparator

The easiest way to sort a Selector is with a plain old Comparator:

public class CloudProcessDifficultyComparator implements Comparator<CloudProcess> {

Chapter 7. Move and neighborh...

136

 public int compare(CloudProcess a, CloudProcess b) {

 return new CompareToBuilder()

 .append(a.getRequiredMultiplicand(), b.getRequiredMultiplicand())

 .append(a.getId(), b.getId())

 .toComparison();

 }

}

You 'll also need to configure it (unless it's annotated applied for this optimization algorithm):

 <entitySelector>

 <cacheType>PHASE</cacheType>

 <selectionOrder>SORTED</selectionOrder>

 <sorterComparatorClass>...CloudProcessDifficultyComparator</

sorterComparatorClass>

 <sorterOrder>DESCENDING</sorterOrder>

 </entitySelector>

7.2.5.2. Sorted selection by SelectionSorterWeightFactory

If you need the entire Solution to sort a Selector, use a SelectionSorterWeightFactory

instead:

public interface SelectionSorterWeightFactory<Sol extends Solution, T> {

 Comparable createSorterWeight(Sol solution, T selection);

}

public class QueenDifficultyWeightFactory implements SelectionSorterWeightFactory<NQueens, Queen> {

 public Comparable createSorterWeight(NQueens nQueens, Queen queen) {

 int distanceFromMiddle = calculateDistanceFromMiddle(nQueens.getN(), queen.getColumnIndex());

 return new QueenDifficultyWeight(queen, distanceFromMiddle);

 }

 // ...

 public static class QueenDifficultyWeight implements Comparable<QueenDifficultyWeight> {

 private final Queen queen;

 private final int distanceFromMiddle;

Sorted selection

137

 public QueenDifficultyWeight(Queen queen, int distanceFromMiddle) {

 this.queen = queen;

 this.distanceFromMiddle = distanceFromMiddle;

 }

 public int compareTo(QueenDifficultyWeight other) {

 return new CompareToBuilder()

 // The more difficult queens have a lower distance to the middle

 .append(other.distanceFromMiddle, distanceFromMiddle) //

 Decreasing

 // Tie breaker

 .append(queen.getColumnIndex(), other.queen.getColumnIndex())

 .toComparison();

 }

 }

}

You 'll also need to configure it (unless it's annotated and automatically applied for this optimization

algorithm):

 <entitySelector>

 <cacheType>PHASE</cacheType>

 <selectionOrder>SORTED</selectionOrder>

 <sorterWeightFactoryClass>...QueenDifficultyWeightFactory</

sorterWeightFactoryClass>

 <sorterOrder>DESCENDING</sorterOrder>

 </entitySelector>

7.2.5.3. Sorted selection by SelectionSorter

Alternatively, you can also use the interface SelectionSorter directly:

public interface SelectionSorter<T> {

 void sort(ScoreDirector scoreDirector, List<T> selectionList);

}

 <entitySelector>

 <cacheType>PHASE</cacheType>

 <selectionOrder>SORTED</selectionOrder>

Chapter 7. Move and neighborh...

138

 <sorterClass>...MyEntitySorter</sorterClass>

 </entitySelector>

7.2.6. Probabilistic selection

Probabilistic selection can happen on any Selector in the selector tree, including any

MoveSelector, EntitySelector or ValueSelector. It does not work with cacheType

JUST_IN_TIME and it only works with selectionOrder PROBABILISTIC.

Each selection has a probabilityWeight, which determines the chance that's that selection will

be selected:

public interface SelectionProbabilityWeightFactory<T> {

 double createProbabilityWeight(ScoreDirector scoreDirector, T selection);

}

 <entitySelector>

 <cacheType>PHASE</cacheType>

 <selectionOrder>PROBABILISTIC</selectionOrder>

 <probabilityWeightFactoryClass>...MyEntityProbabilityWeightFactoryClass</

probabilityWeightFactoryClass>

 </entitySelector>

For example, if there are 3 entities: process A (probabilityWeight 2.0), process B

(probabilityWeight 0.5) and process C (probabilityWeight 0.5), then process A will be selected 4

times more than B and C.

7.3. Generic MoveSelectors

7.3.1. changeMoveSelector

For 1 planning variable, the ChangeMove selects 1 planning entity and 1 planning value and assigns

the entity's variable to that value.

changeMoveSelector

139

Simplest configuration:

 <changeMoveSelector/>

Advanced configuration:

 <changeMoveSelector>

 ... <!-- Normal selector properties -->

 <entitySelector>

 <entityClass>...Lecture</entityClass>

 ...

 </entitySelector>

 <valueSelector>

 <variableName>room</variableName>

 ...

 </valueSelector>

 </changeMoveSelector>

Chapter 7. Move and neighborh...

140

A ChangeMove is the finest grained move.

Important

Almost every moveSelector configuration injected into a metaheuristic algorithm

should include a changeMoveSelector or a custom implementation. This

guarantees that every possible Solution can be reached through applying a

number of moves in sequence (not taking score traps into account). Of course,

normally it is unioned with other, more course grained move selectors.

7.3.2. swapMoveSelector

The SwapMove selects 2 different planning entities and swaps the planning values of all their

planning variables.

Although a SwapMove on a single variable is essentially just 2 ChangeMoves, it's often the winning

step where the first of the 2 ChangeMoves would not be the winning step because it leave the

solution in a state with broken hard constraints. For example: swapping the room of 2 lectures

pillarSwapMoveSelector

141

doesn't bring the solution in a intermediate state where both lectures are in the same room which

breaks a hard constraint.

Simplest configuration:

 <swapMoveSelector/>

Advanced configuration:

 <swapMoveSelector>

 ... <!-- Normal selector properties -->

 <entitySelector>

 <entityClass>...Lecture</entityClass>

 ...

 </entitySelector>

 <secondaryEntitySelector>

 ...

 </secondaryEntitySelector>

 <variableNameInclude>room</variableNameInclude>

 <variableNameInclude>...</variableNameInclude>

 </swapMoveSelector>

The secondaryEntitySelector is rarely needed: if it is not specified, entities from the same

entitySelector are swapped.

If one or more variableNameInclude properties are specified, not all planning variables will

be swapped, but only those specified. For example for course scheduling, specifying only

variableNameInclude room will make it only swap room, not period.

7.3.3. pillarSwapMoveSelector

A pillar is a set of planning entities which have the same planning value(s) for each of their planning

variables. The pillarSwapMove selects 2 different entity pillars and swaps the values of all their

variables for all their entities.

Simplest configuration:

 <pillarSwapMoveSelector/>

Advanced configuration:

 <pillarSwapMoveSelector>

 ... <!-- Normal selector properties -->

Chapter 7. Move and neighborh...

142

 <pillarSelector>

 <entitySelector>

 <entityClass>...Lecture</entityClass>

 ...

 </entitySelector>

 </pillarSelector>

 <secondaryPillarSelector>

 <entitySelector>

 ...

 </entitySelector>

 </secondaryPillarSelector>

 <variableNameInclude>room</variableNameInclude>

 <variableNameInclude>...</variableNameInclude>

 </pillarSwapMoveSelector>

The secondaryPillarSelector is rarely needed: if it is not specified, entities from the same

pillarSelector are swapped.

The other properties are explained in swapMoveSelector.

7.3.4. subChainChangeMoveSelector

A subChain is a set of planning entities with a chained planning variable which form part of a

chain. The subChainChangeMove selects a subChain and moves it to another place in a different

or the same anchor chain.

Simplest configuration:

 <subChainChangeMoveSelector/>

Advanced configuration:

 <subChainChangeMoveSelector>

 ... <!-- Normal selector properties -->

 <subChainSelector>

 <entitySelector>

 <entityClass>...VrpCustomer</entityClass>

 ...

 </entitySelector>

 <minimumSubChainSize>2</minimumSubChainSize>

 <maximumSubChainSize>40</maximumSubChainSize>

 </subChainSelector>

 <valueSelector>

 <variableName>previousAppearance</variableName>

 ...

 </valueSelector>

subChainSwapMoveSelector

143

 <selectReversingMoveToo>true</selectReversingMoveToo>

 </subChainChangeMoveSelector>

The subChainSelector selects a number of entities, no less than minimumSubChainSize

(defaults to 2) and no more than maximumSubChainSize (defaults to infinity).

The property selectReversingMoveToo (defaults to true) enabled selecting the reverse of every

subchain too.

7.3.5. subChainSwapMoveSelector

The subChainSwapMove selects 2 different subChains and moves it to another place in a different

or the same anchor chain.

Simplest configuration:

 <subChainSwapMoveSelector/>

Advanced configuration:

 <subChainSwapMoveSelector>

 ... <!-- Normal selector properties -->

 <subChainSelector>

 <entitySelector>

 <entityClass>...VrpCustomer</entityClass>

 ...

 </entitySelector>

 <minimumSubChainSize>2</minimumSubChainSize>

 <maximumSubChainSize>40</maximumSubChainSize>

 </subChainSelector>

 <secondarySubChainSelector>

 <entitySelector>

 <entityClass>...VrpCustomer</entityClass>

 ...

 </entitySelector>

 <minimumSubChainSize>2</minimumSubChainSize>

 <maximumSubChainSize>40</maximumSubChainSize>

 </secondarySubChainSelector>

 <selectReversingMoveToo>true</selectReversingMoveToo>

 </subChainSwapMoveSelector>

The secondarySubChainSelector is rarely needed: if it is not specified, entities from the same

subChainSelector are swapped.

The other properties are explained in subChainChangeMoveSelector.

Chapter 7. Move and neighborh...

144

7.4. Combining multiple MoveSelectors

7.4.1. unionMoveSelector

A unionMoveSelector selects a Move by selecting 1 of its child MoveSelectors to supply the

next Move.

Simplest configuration:

 <unionMoveSelector>

 <...MoveSelector/>

 <...MoveSelector/>

 <...MoveSelector/>

 ...

 </unionMoveSelector>

Advanced configuration:

 <unionMoveSelector>

 ... <!-- Normal selector properties -->

 <selectorProbabilityWeightFactoryClass>...ProbabilityWeightFactory</

selectorProbabilityWeightFactoryClass>

 <changeMoveSelector>

 <fixedProbabilityWeight>...</fixedProbabilityWeight>

 ...

 </changeMoveSelector>

 <swapMoveSelector>

 <fixedProbabilityWeight>...</fixedProbabilityWeight>

 ...

 </swapMoveSelector>

 <...MoveSelector>

 <fixedProbabilityWeight>...</fixedProbabilityWeight>

 ...

 </...MoveSelector>

 ...

 </unionMoveSelector>

The selectorProbabilityWeightFactory determines in selectionOrder RANDOM how often a

child MoveSelector is selected to supply the next Move. By default, each child MoveSelector has

the same chance of being selected. Change the fixedProbabilityWeight of such a child to select

it more often. For example, the unionMoveSelector can return a SwapMove twice as often as a

ChangeMove:

 <unionMoveSelector>

cartesianProductMoveSelector

145

 <changeMoveSelector>

 <fixedProbabilityWeight>1.0</fixedProbabilityWeight>

 ...

 </changeMoveSelector>

 <swapMoveSelector>

 <fixedProbabilityWeight>2.0</fixedProbabilityWeight>

 ...

 </swapMoveSelector>

 </unionMoveSelector>

The number of possible ChangeMoves is very different from the number of possible SwapMoves

and furthermore it's problem dependent. To give each individual Move the same selection chance

(as opposed to each MoveSelector), use the FairSelectorProbabilityWeightFactory:

 <unionMoveSelector>

 <selectorProbabilityWeightFactoryClass>org.optaplanner.core.impl.heuristic.selector.common.decorator.FairSelectorProbabilityWeightFactory</

selectorProbabilityWeightFactoryClass>

 <changeMoveSelector/>

 <swapMoveSelector/>

 </unionMoveSelector>

7.4.2. cartesianProductMoveSelector

A cartesianProductMoveSelector selects a new CompositeMove. It builds that CompositeMove

by selecting 1 Move per child MoveSelector and adding it to the CompositeMove.

Simplest configuration:

 <cartesianProductMoveSelector>

 <...MoveSelector/>

 <...MoveSelector/>

 <...MoveSelector/>

 ...

 </cartesianProductMoveSelector>

Advanced configuration:

 <cartesianProductMoveSelector>

 ... <!-- Normal selector properties -->

 <changeMoveSelector>

 ...

 </changeMoveSelector>

 <swapMoveSelector>

Chapter 7. Move and neighborh...

146

 ...

 </swapMoveSelector>

 <...MoveSelector>

 ...

 </...MoveSelector>

 ...

 </cartesianProductMoveSelector>

7.5. EntitySelector

Simplest configuration:

 <entitySelector/>

Advanced configuration:

 <entitySelector>

 ... <!-- Normal selector properties -->

 <entityClass>org.optaplanner.examples.curriculumcourse.domain.Lecture</

entityClass>

 </entitySelector>

The entityClass property is only required if it cannot be deduced automatically because there

are multiple entity classes.

7.6. ValueSelector

Simplest configuration:

 <valueSelector/>

Advanced configuration:

 <valueSelector>

 ... <!-- Normal selector properties -->

 <variableName>room</variableName>

 </valueSelector>

The variableName property is only required if it cannot be deduced automatically because there

are multiple variables (for the related entity class).

Custom moves

147

7.7. Custom moves

7.7.1. Which move types might be missing in my

implementation?

To determine which move types might be missing in your implementation, run a benchmarker for

a short amount of time and configure it to write the best solutions to disk. Take a look at such a

best solution: it will likely be a local optima. Try to figure out if there's a move that could get out

of that local optima faster.

If you find one, implement that course-grained move, mix it with the existing moves and benchmark

it against the previous configurations to see if you want to keep it.

7.7.2. Custom moves introduction

Instead of reusing the generic Moves (such as ChangeMove) you can also implement your own

Moves. Generic and custom MoveSelectors can be combined as wanted.

A custom Move can be tailored to work to the advantage of your constraints. For example, in

examination scheduling, changing the period of an exam A also changes te period of all the exams

that need to coincide with exam A.

A custom Move is also slightly faster than a generic Move. However, it's far more work to implement

and much harder to avoid bugs. After implementing a custom Move, make sure to turn on

environmentMode FULL_ASSERT to check for score corruptions.

7.7.3. The interface Move

Your custom moves must implement the Move interface:

public interface Move {

 boolean isMoveDoable(ScoreDirector scoreDirector);

 Move createUndoMove(ScoreDirector scoreDirector);

 void doMove(ScoreDirector scoreDirector);

 Collection<? extends Object> getPlanningEntities();

 Collection<? extends Object> getPlanningValues();

}

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class RowChangeMove implements Move {

Chapter 7. Move and neighborh...

148

 private Queen queen;

 private Row toRow;

 public RowChangeMove(Queen queen, Row toRow) {

 this.queen = queen;

 this.toRow = toRow;

 }

 // ... see below

}

An instance of RowChangeMove moves a queen from its current row to a different row.

Planner calls the doMove(ScoreDirector) method to do a move. The Move implementation must

notify the ScoreDirector of any changes it make to planning entity's variables:

 public void doMove(ScoreDirector scoreDirector) {

 scoreDirector.beforeVariableChanged(queen, "row"); // before changes

 are made to the queen.row

 queen.setRow(toRow);

 scoreDirector.afterVariableChanged(queen, "row"); // after changes are

 made to the queen.row

 }

You need to call the methods scoreDirector.beforeVariableChanged(Object,

String) and scoreDirector.afterVariableChanged(Object, String) directly

before and after modifying the entity. Alternatively, you can also

call the methods scoreDirector.beforeAllVariablesChanged(Object) and

scoreDirector.afterAllVariablesChanged(Object).

Note

You can alter multiple entities in a single move and effectively create a big move

(also known as a coarse-grained move).

Warning

A Move can only change/add/remove planning entities, it must not change any of

the problem facts.

Planner automatically filters out non doable moves by calling the isDoable(ScoreDirector)

method on a move. A non doable move is:

The interface Move

149

• A move that changes nothing on the current solution. For example, moving queen B0 to row 0

is not doable, because it is already there.

• A move that is impossible to do on the current solution. For example, moving queen B0 to row

10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row

isn't doable:

 public boolean isMoveDoable(ScoreDirector scoreDirector) {

 return !ObjectUtils.equals(queen.getRow(), toRow);

 }

Because we won't generate a move which can move a queen outside the board limits, we don't

need to check it. A move that is currently not doable could become doable on the working

Solution of a later step.

Each move has an undo move: a move (normally of the same type) which does the exact opposite.

In the example above the undo move of C0 to C2 would be the move C2 to C0. An undo move is

created from a Move, before the Move has been done on the current solution.

 public Move createUndoMove(ScoreDirector scoreDirector) {

 return new RowChangeMove(queen, queen.getRow());

 }

Notice that if C0 would have already been moved to C2, the undo move would create the move

C2 to C2, instead of the move C2 to C0.

A solver phase might do and undo the same Move more than once. In fact, many solver phases

will iteratively do an undo a number of moves to evaluate them, before selecting one of those and

doing that move again (without undoing it this time).

A Move must implement the getPlanningEntities() and getPlanningValues() methods. They

are used by entity tabu and value tabu respectively. When they are called, the Move has already

been done.

 public List<? extends Object> getPlanningEntities() {

 return Collections.singletonList(queen);

 }

 public Collection<? extends Object> getPlanningValues() {

 return Collections.singletonList(toRow);

 }

Chapter 7. Move and neighborh...

150

If your Move changes multiple planning entities, return all of them in getPlanningEntities() and

return all their values (to which they are changing) in getPlanningValues().

 public Collection<? extends Object> getPlanningEntities() {

 return Arrays.asList(leftCloudProcess, rightCloudProcess);

 }

 public Collection<? extends Object> getPlanningValues() {

 return Arrays.asList(leftCloudProcess.getComputer(), rightCloudProcess.getComputer());

 }

A Move must implement the equals() and hashCode() methods. 2 moves which make the same

change on a solution, should be equal.

 public boolean equals(Object o) {

 if (this == o) {

 return true;

 } else if (o instanceof RowChangeMove) {

 RowChangeMove other = (RowChangeMove) o;

 return new EqualsBuilder()

 .append(queen, other.queen)

 .append(toRow, other.toRow)

 .isEquals();

 } else {

 return false;

 }

 }

 public int hashCode() {

 return new HashCodeBuilder()

 .append(queen)

 .append(toRow)

 .toHashCode();

 }

Notice that it checks if the other move is an instance of the same move type. This instanceof

check is important because a move will be compared to a move with another move type if you're

using more then 1 move type.

It's also recommended to implement the toString() method as it allows you to read Planner's

logging more easily:

 public String toString() {

 return queen + " => " + toRow;

MoveListFactory: the easy way to generate custom moves

151

 }

Now that we can implement a single custom Move, let's take a look at generating such custom

moves.

7.7.4. MoveListFactory: the easy way to generate custom moves

The easiest way to generate custom moves is by implementing the interface MoveListFactory:

public interface MoveListFactory {

 List<Move> createMoveList(Solution solution);

}

For example:

public class RowChangeMoveFactory implements MoveListFactory {

 public List<Move> createMoveList(Solution solution) {

 NQueens nQueens = (NQueens) solution;

 List<Move> moveList = new ArrayList<Move>();

 for (Queen queen : nQueens.getQueenList()) {

 for (Row toRow : nQueens.getRowList()) {

 moveList.add(new RowChangeMove(queen, toRow));

 }

 }

 return moveList;

 }

}

Simple configuration (which can be nested in a unionMoveSelector just like any other

MoveSelector):

 <moveListFactory>

 <moveListFactoryClass>org.optaplanner.examples.nqueens.solver.move.factory.RowChangeMoveFactory</

moveListFactoryClass>

 </moveListFactory>

Advanced configuration:

Chapter 7. Move and neighborh...

152

 <moveListFactory>

 ... <!-- Normal moveSelector properties -->

 <moveListFactoryClass>org.optaplanner.examples.nqueens.solver.move.factory.RowChangeMoveFactory</

moveListFactoryClass>

 </moveListFactory>

Because the MoveListFactory generates all moves at once in a List<Move>, it does not support

cacheType JUST_IN_TIME. Therefore, moveListFactory uses cacheType STEP by default and it

scales badly in memory footprint.

7.7.5. MoveIteratorFactory: generate custom moves just in time

Use this advanced form to generate custom moves by implementing the interface

MoveIteratorFactory:

public interface MoveIteratorFactory {

 long getSize(ScoreDirector scoreDirector);

 Iterator<Move> createOriginalMoveIterator(ScoreDirector scoreDirector);

 Iterator<Move> createRandomMoveIterator(ScoreDirector scoreDirector, Random workingRandom);

}

The method getSize() must give an estimation of the size. It doesn't need to be correct.

The method createOriginalMoveIterator is called if the selectionOrder is ORIGINAL or

if it is cached. The method createRandomMoveIterator is called for selectionOrder RANDOM

combined with cacheType JUST_IN_TIME.

Important

Don't create a collection (list, array, map, set) of Moves when creating

the Iterator<Move>: the whole purpose of MoveIteratorFactory over

MoveListFactory is giving you the ability to create a Move just in time in the

Iterator's method next().

Simple configuration (which can be nested in a unionMoveSelector just like any other

MoveSelector):

 <moveIteratorFactory>

Move generation through DRL

153

 <moveIteratorFactoryClass>...</moveIteratorFactoryClass>

 </moveIteratorFactory>

Advanced configuration:

 <moveIteratorFactory>

 ... <!-- Normal moveSelector properties -->

 <moveIteratorFactoryClass>...</moveIteratorFactoryClass>

 </moveIteratorFactory>

7.7.6. Move generation through DRL

Not yet supported.

154

Chapter 8.

155

Chapter 8. Construction heuristics

8.1. Overview

A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution

isn't always feasible, but it finds it fast and metaheuristics can finish the job.

Construction heuristics terminate automatically, so there's usually no need to configure a

Termination on the construction heuristic phase specifically.

8.2. First Fit

8.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entities (in default order), initializing 1

planning entity at a time. It assigns the planning entity to the best available planning value, taking

the already initialized planning entities into account. It terminates when all planning entities have

been initialized. It never changes a planning entity after it has been assigned.

Chapter 8. Construction heuri...

156

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it

impossible to reach the optimal solution. Suffixing this construction heuristic with metaheurstics

can remedy that.

8.2.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

Note

The constructionHeuristicPickEarlyType of

FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING is a big speedup, which should

be applied when initializing a planning entity which can only make the score lower

or equal. So if:

• There are no positive constraints.

• There is no negative constraint that can stop being broken by adding a planning

entity (except if another negative constraint gets broken which outweighs the

first negative constraint).

If that is not the case, then it can still be good to apply it in some cases, but not in

most cases. Use the Benchmarker to decide.

8.3. First Fit Decreasing

8.3.1. Algorithm description

Like First Fit, but assigns the more difficult planning entities first, because they are less likely

to fit in the leftovers. So it sorts the planning entities on decreasing difficulty.

Requires the model to support planning entity difficulty comparison.

Configuration

157

Note

One would expect that this algorithm always performs better than First Fit.

That's not always the case, but usually is.

8.3.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

Chapter 8. Construction heuri...

158

8.4. Best Fit

8.4.1. Algorithm description

Like First Fit, but uses the weaker planning values first, because the strong planning values

are more likely to be able to accommodate later planning entities. So it sorts the planning values

on increasing strength.

Requires the model to support planning value strength comparison.

Note

One would expect that this algorithm always performs better than First Fit.

That's not always the case.

8.4.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>BEST_FIT</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

8.5. Best Fit Decreasing

8.5.1. Algorithm description

Combines First Fit Decreasing and Best Fit. So it sorts the planning entities on decreasing

difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength

comparison.

Note

One would expect that this algorithm always performs better than First Fit,

First Fit Decreasing and Best Fit. That's not always the case.

Configuration

159

8.5.2. Configuration

Configure this SolverPhase:

 <constructionHeuristic>

 <constructionHeuristicType>BEST_FIT_DECREASING</constructionHeuristicType>

 <!-- Speedup that can be applied to most, but not all use cases: -->

 <!--

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType> -->

 </constructionHeuristic>

8.6. Cheapest insertion

8.6.1. Algorithm description

TODO

8.6.2. Configuration

TODO Not implemented yet.

8.7. Regret insertion

8.7.1. Algorithm description

TODO

8.7.2. Configuration

TODO Not implemented yet.

160

Chapter 9.

161

Chapter 9. Local search

9.1. Overview

Local search starts from an initial solution and evolves that single solution into a mostly better and

better solution. It uses a single search path of solutions, not a search tree. At each solution in

this path it evaluates a number of moves on the solution and applies the most suitable move to

take the step to the next solution. It does that for a high number of iterations until it's terminated

(usually because its time has run out).

Local search acts a lot like a human planner: it uses a single search path and moves facts around

to find a good feasible solution. Therefore it's pretty natural to implement.

Local search often needs to start from an initialized solution, therefore it's recommended to

configure a construction heuristic solver phase before it.

9.2. Hill climbing (simple local search)

9.2.1. Algorithm description

Hill climbing tries all selected moves and then takes the best move, which is the move which

leads to the solution with the highest score. That best move is called the step move. From that

new solution, it again tries all selected moves and takes the best move and continues like that

iteratively. If multiple selected moves tie for the best move, one of them is randomly chosen as

the best move.

Chapter 9. Local search

162

Notice that one a queen has moved, it can be moved again later. This is a good thing, because

in an NP-complete problem it's impossible to predict what will be the optimal final value for a

planning variable.

Hill climbing can easily get stuck in a local optima:

Tabu search

163

Improvements upon hill climbing (such as tabu search and simulated annealing) address the

problem of being stuck in local optima.

9.3. Tabu search

9.3.1. Algorithm description

Tabu search works like hill climbing, but it maintains a tabu list to avoid getting stuck in local

optima. The tabu list holds recently used objects that are taboo to use for now. Moves that involve

an object in the tabu list, are not accepted. The tabu list objects can be anything related to the

move, such as the planning entity, planning value, move, solution, ... Here's an example with entity

tabu for 4 queens, so the queens are put in the tabu list:

Chapter 9. Local search

164

See Tabu Search acceptor below.

9.4. Simulated annealing

9.4.1. Algorithm description

Simulated annealing evaluates only a few moves per step, so it steps quickly. In the classic

implementation, the first accepted move is the winning step. A move is accepted if it doesn't

decrease the score or - in case it does decrease the score - if passes a random check. The chance

that a decreasing move passes the random check decreases relative to the size of the score

decrement and the time the phase has been running (which is represented as the temperature).

Late acceptance

165

See Simulated Annealing acceptor below.

9.5. Late acceptance

9.5.1. Algorithm description

Late acceptance (also known as Late acceptance hill climbing) also evaluates only a few moves

per step. A move is accepted if it leads to a score that is at least the winning score of a fixed

number of steps ago.

Chapter 9. Local search

166

By default hill climbing behaviour is enabled, which means that moves that lead to a score of at

least the current solution are also accepted.

See Late Acceptance acceptor below.

9.6. About neighborhoods, moves and steps

9.6.1. Move generation tips

At each solution, local search will try all possible moves and pick the best move to change to the

next solution. It's up to you to generate those moves. Let's take a look at all the possible moves

on the starting solution of 4 queens:

It's highly recommended that you verify all solutions are connected by your move set. This

means that by combining a finite number of moves you can reach any solution from any solution.

Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,

you should check it. Just because big moves outperform small moves in a short test run, it doesn't

mean that they will outperform them in a long test run.

A step

167

You can mix different move types. Usually you're better off preferring small (fine-grained) moves

over big (course-grained) moves because the score delta calculation will pay off more. However,

as the traveling tournament example proves, if you can remove a hard constraint by using a certain

set of big moves, you can win performance and scalability. A big moves version could evaluate a

lot less unfeasible solutions, which enables it to outperform and outscale a small moves version.

9.6.2. A step

A step is the winning move. The local search solver tries every move on the current solution and

picks the best accepted move as the step:

Figure 9.1. Decide the next step at step 0 (4 queens example)

Because the move B0 to B3 has the highest score (-3), it is picked as the next step. Notice that

C0 to C3 (not shown) could also have been picked because it also has the score -3. If multiple

moves have the same highest score, one is picked randomly, in this case B0 to B3.

The step is made and from that new solution, the local search solver tries all the possible moves

again, to decide the next step after that. It continually does this in a loop, and we get something

like this:

Chapter 9. Local search

168

Figure 9.2. All steps (4 queens example)

Notice that the local search solver doesn't use a search tree, but a search path. The search path

is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the

step, it doesn't investigate that solution further. This is one of the reasons why local search is

very scalable.

Getting stuck in local optima

169

As you can see, the local search solver solves the 4 queens problem by starting with the starting

solution and make the following steps sequentially:

1. B0 to B3

2. D0 to B2

3. A0 to B1

If we turn on debug logging for the category org.optaplanner, then those steps are shown into

the log:

INFO Solving started: time spend (0), score (-6), new best score (-6), random

 seed (0).

DEBUG Step index (0), time spend (20), score (-3), new best score (-3),

 accepted/selected move count (12/12) for picked step (col1@row0 => row3).

DEBUG Step index (1), time spend (31), score (-1), new best score (-1),

 accepted/selected move count (12/12) for picked step (col0@row0 => row1).

DEBUG Step index (2), time spend (40), score (0), new best score (0),

 accepted/selected move count (12/12) for picked step (col3@row0 => row2).

INFO Phase (0) localSearch ended: step total (3), time spend (41), best score (0).

INFO Solving ended: time spend (41), best score (0), average calculate count

 per second (1780).

Notice that the logging uses the toString() method of our Move implementation: col1@row0 =>

row3.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37

possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction

of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of

18446744073709551616 possible solutions. Note: with construction heuristics it's even a lot more

efficient.

9.6.3. Getting stuck in local optima

A hill climber always takes improving moves. This may seem like a good thing, but it's not. It

suffers from a number of problems:

• It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and

there is no improving move, it is forced to take a next step that leads to a solution Y with score

-2, after that however, it's very real that it will pick the step back to solution X with score -1. It

will then start looping between solution X and Y.

• It can start walking in its own footsteps, picking the same next step at every step.

Of course OptaPlanner implements better local searches, such as tabu search and simulated

annealing which can avoid these problems. We recommend to never use a hill climber, unless

you're absolutely sure there are no local optima in your planning problem.

Chapter 9. Local search

170

9.7. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

• A MoveSelector which selects the possible moves of the current solution. See the chapter

about Move and neighborhood selection.

• An acceptor which filters out unacceptable moves. It can also weigh a move it accepts.

• A forager which gathers all accepted moves and picks the next step from them.

Figure 9.3. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the acceptor

accepted all of them and the forager picked the move B0 to B3.

If we turn on trace logging for the category org.optaplanner, then the decision making is shown

in the log:

INFO Solver started: time spend (0), score (-6), new best score (-6), random

 seed (0).

TRACE Move index (0) not doable, ignoring move (col0@row0 => row0).

TRACE Move index (1), score (-4), accepted (true) for move (col0@row0

 => row1).

TRACE Move index (2), score (-4), accepted (true) for move (col0@row0

 => row2).

Acceptor

171

TRACE Move index (3), score (-4), accepted (true) for move (col0@row0

 => row3).

...

TRACE Move index (6), score (-3), accepted (true) for move (col1@row0

 => row3).

...

TRACE Move index (9), score (-3), accepted (true) for move (col2@row0

 => row3).

...

TRACE Move index (12), score (-4), accepted (true) for move (col3@row0

 => row3).

DEBUG Step index (0), time spend (6), score (-3), new best score (-3),

 accepted/selected move count (12/12) for picked step (col1@row0 => row3).

...

Because the last solution can degrade (especially in tabu search and simulated annealing), the

Solver remembers the best solution it has encountered through the entire search path. Each

time the current solution is better than the last best solution, the current solution is cloned and

referenced as the new best solution.

9.7.1. Acceptor

An acceptor is used (together with a forager) to active tabu search, simulated annealing, great

deluge, ... For each move it checks whether it is accepted or not.

You can implement your own Acceptor, although the build-in acceptors should suffice for most

needs. You can also combine multiple acceptors.

9.7.1.1. Tabu search acceptor

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that

move breaks tabu. OptaPlanner implements several tabu types:

• Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one

of those solutions. If you can spare the memory, don't be cheap on the tabu size.

 <acceptor>

 <solutionTabuSize>1000</solutionTabuSize>

 </acceptor>

• Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

 <acceptor>

 <moveTabuSize>7</moveTabuSize>

Chapter 9. Local search

172

 </acceptor>

• Undo move tabu makes the undo move of recent steps tabu.

 <acceptor>

 <undoMoveTabuSize>7</undoMoveTabuSize>

 </acceptor>

• Planning entity tabu makes the planning entities of recent steps tabu. For example, for N queens

it makes the recently moved queens tabu. It's recommended to start with this tabu type.

 <acceptor>

 <entityTabuSize>7</entityTabuSize>

 </acceptor>

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of entities,

for example 2%:

 <acceptor>

 <entityTabuRatio>0.02</entityTabuRatio>

 </acceptor>

• Planning value tabu makes the planning values of recent steps tabu. For example, for N queens

it makes the recently moved to rows tabu.

 <acceptor>

 <valueTabuSize>7</valueTabuSize>

 </acceptor>

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of values, for

example 2%:

 <acceptor>

 <valueTabuRatio>0.02</valueTabuRatio>

 </acceptor>

You can even combine tabu types:

 <acceptor>

Acceptor

173

 <entityTabuSize>7</entityTabuSize>

 <valueTabuSize>3</valueTabuSize>

 </acceptor>

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other

hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get

stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration.

A tabu search acceptor should be combined with a high acceptedCountLimit, such as 1000.

9.7.1.2. Simulated annealing acceptor

Simulated annealing does not always pick the move with the highest score, neither does it evaluate

many moves per step. At least at first. Instead, it gives non improving moves also a chance to be

picked, depending on its score and the time gradient of the Termination. In the end, it gradually

turns into a hill climber, only accepting improving moves.

In many use cases, simulated annealing surpasses tabu search. By changing a few lines of

configuration, you can easily switch from tabu search to simulated annealing and back.

Start with a simulatedAnnealingStartingTemperature set to the maximum score delta a single

move can cause. Use the Benchmarker to tweak the value.

 <acceptor>

 <simulatedAnnealingStartingTemperature>2hard/100soft</

simulatedAnnealingStartingTemperature>

 </acceptor>

 <forager>

 <acceptedCountLimit>4</acceptedCountLimit>

 </forager>

A simulated annealing acceptor should be combined with a low acceptedCountLimit. The classic

algorithm uses an acceptedCountLimit of 1, but often 4 performs better.

You can even combine it with a tabu acceptor at the same time. Use a lower tabu size than in

a pure tabu search configuration.

 <acceptor>

 <simulatedAnnealingStartingTemperature>10.0</

simulatedAnnealingStartingTemperature>

 <entityTabuSize>5</entityTabuSize>

 </acceptor>

 <forager>

 <acceptedCountLimit>4</acceptedCountLimit>

 </forager>

Chapter 9. Local search

174

This differs from phasing, another powerful technique, where first simulated annealing is used,

followed by tabu search.

9.7.1.3. Late acceptance acceptor

Late acceptance accepts any move that has a score which is higher than the best score of a

number of steps ago. That number of steps is the lateAcceptanceSize.

 <acceptor>

 <lateAcceptanceSize>500</lateAcceptanceSize>

 </acceptor>

 <forager>

 <acceptedCountLimit>1000</acceptedCountLimit>

 </forager>

9.7.2. Forager

A forager gathers all accepted moves and picks the move which is the next step. Normally it picks

the accepted move with the highest score. If several accepted moves have the highest score, one

is picked randomly.

You can implement your own Forager, although the build-in forager should suffice for most needs.

9.7.2.1. Accepted count limit

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.

To evaluate only a random subset of all the moves, use:

• An acceptedCountLimit integer, which specifies how many accepted moves should be

evaluated during each step. By default, all accepted moves are evaluated at every step.

 <forager>

 <acceptedCountLimit>1000</acceptedCountLimit>

 </forager>

Unlike the n queens problem, real world problems require the use of acceptedCountLimit. Start

from an acceptedCountLimit that takes a step in less then 2 seconds. Turn on INFO logging to

see the step times. Use the Benchmarker to tweak the value.

Important

With a low acceptedCountLimit it is recommended to avoid using

selectionOrder SHUFFLED because the shuffling generates a random number

Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

175

for every element in the selector, taking up a lot of time, but only a few are actually

selected.

9.7.2.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are

3 pick early types:

• NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.

This is the default.

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

• FIRST_BEST_SCORE_IMPROVING: Pick the first accepted move that improves the best score. If

none improve the best score, it behaves exactly like the pickEarlyType NEVER.

 <forager>

 <pickEarlyType>FIRST_BEST_SCORE_IMPROVING</pickEarlyType>

 </forager>

• FIRST_LAST_STEP_SCORE_IMPROVING: Pick the first accepted move that improves the last step

score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

 <forager>

 <pickEarlyType>FIRST_LAST_STEP_SCORE_IMPROVING</pickEarlyType>

 </forager>

9.8. Using a custom Termination, MoveSelector,

EntitySelector, ValueSelector or Acceptor

You can plug in a custom Termination, MoveSelector, EntitySelector, ValueSelector or

Acceptor by extending the abstract class and also the related *Config class.

For example, to use a custom MoveSelector, extend the AbstractMoveSelector class, extend

the MoveSelectorConfig class and configure it in the solver configuration.

Note

It's not possible to directly inject a Termination, ... instance, instead of also extend

a Config class because:

Chapter 9. Local search

176

• A SolverFactory can build multiple Solver instances, which each require a

distinct Termination, ... instance.

• A solver configuration needs to be serializable to and from XML. This makes

benchmarking with PlannerBenchmark particularly easy because you can

configure different Solver variants in XML.

• A Config class is often easier and clearer to configure. For

example: TerminationConfig translates maximumMinutesSpend and

maximumSecondsSpend into maximumTimeMillisSpend.

If you build a better implementation that's not domain specific, consider contributing it back as a

pull request on github and we'll optimize it and take it along in future refactors.

Chapter 10.

177

Chapter 10. Evolutionary

algorithms

10.1. Overview

Evolutionary algorithms work on a population of solutions and evolve that population.

10.2. Evolutionary Strategies

This algorithm has not been implemented yet.

10.3. Genetic algorithms

This algorithm has not been implemented yet.

178

Chapter 11.

179

Chapter 11. Hyperheuristics

11.1. Overview

A hyperheuristic automates the decision which heuristic(s) to use on a specific data set.

A future version of Planner will have native support for hyperheuristics. Meanwhile, it's pretty easy

to implement it yourself: Based on the size or difficulty of a data set (which is a criterion), use a

different Solver configuration (or adjust the default configuration using the Solver configuration

API). The benchmark report can help to identify such criteria.

180

Chapter 12.

181

Chapter 12. Exact methods

12.1. Overview

Exact methods will always find the global optimum and recognize it too. That being said, they don't

scale (not even beyond toy data sets) and are therefore mostly useless.

12.2. Brute Force

12.2.1. Algorithm description

The Brute Force algorithm creates and evaluates every possible solution.

Notice that it creates a search tree that explodes as the problem size increases. Brute Force

is mostly unusable for a real-world problem due to time limitations, as proven by these

scalability graphs from the benchmarker:

Chapter 12. Exact methods

182

Configuration

183

12.2.2. Configuration

Using the brute force algorithm is easy:

<solver>

 ...

 <bruteForce>

 </bruteForce>

</solver>

12.3. Depth-first search

12.3.1. Algorithm description

Depth-First Search is an improvement over Brute Force, as it regularly prunes away an entire

subset of solutions which cannot have a better solution than the best solution already found at

that point. for example: at index 15, it can prune away all unvisited solutions with queen A on row

0, because none will be better than the solution of index 14 with a score of -1.

Chapter 12. Exact methods

184

Notice that it (much like Brute Force) creates a search tree that explodes as the problem size

increases. Depth-First Search is mostly unusable for a real-world NP-complete problem due

to time limitations.

Technically, this Backtracking Depth-First Search with pruning is a form of Branch And Bound,

although Branch and Bound is often more flexible in its pruning.

12.3.2. Configuration

Depth-first search is not yet implemented. Patches welcome.

Chapter 13.

185

Chapter 13. Benchmarking and

tweaking
13.1. Finding the best Solver configuration

OptaPlanner supports several optimization algorithms, but you're probably wondering which is the

best one? Although some optimization algorithms generally perform better than others, it really

depends on your problem domain. Most solver phases have parameters which can be tweaked.

Those parameters can influence the results a lot, even though most solver phases work pretty

well out-of-the-box.

Luckily, OptaPlanner includes a benchmarker, which allows you to play out different solver phases

with different settings against each other, so you can pick the best configuration for your planning

problem.

13.2. Doing a benchmark

13.2.1. Adding the extra dependency

The benchmarker is in a separate artifact called optaplanner-benchmark.

If you use Maven, add a dependency in your pom.xml file:

 <dependency>

 <groupId>org.optaplanner</groupId>

 <artifactId>optaplanner-benchmark</artifactId>

 <version>...</version>

 </dependency>

This is similar for Gradle, Ivy and Buildr. The version must be exactly the same as the

optaplanner-core version used.

If you use ANT, you've probably already copied the required jars from the download zip's binaries

directory.

13.2.2. Building and running a PlannerBenchmark

You can build a PlannerBenchmark instance with the XmlPlannerBenchmarkFactory. Configure

it with a benchmark configuration xml file:

 PlannerBenchmarkFactory plannerBenchmarkFactory = new XmlPlannerBenchmarkFactory(

 "/org/optaplanner/examples/nqueens/benchmark/

nqueensBenchmarkConfig.xml");

Chapter 13. Benchmarking and ...

186

 PlannerBenchmark plannerBenchmark = benchmarkFactory.buildPlannerBenchmark();

 plannerBenchmark.benchmark();

A basic benchmark configuration file looks something like this:

<?xml version="1.0" encoding="UTF-8"?>

<plannerBenchmark>

 <benchmarkDirectory>local/data/nqueens</benchmarkDirectory>

 <!--<parallelBenchmarkCount>AUTO</parallelBenchmarkCount>-->

 <warmUpSecondsSpend>30</warmUpSecondsSpend>

 <inheritedSolverBenchmark>

 <problemBenchmarks>

 <xstreamAnnotatedClass>org.optaplanner.examples.nqueens.domain.NQueens</

xstreamAnnotatedClass>

 <inputSolutionFile>data/nqueens/unsolved/unsolvedNQueens32.xml</

inputSolutionFile>

 <inputSolutionFile>data/nqueens/unsolved/unsolvedNQueens64.xml</

inputSolutionFile>

 <problemStatisticType>BEST_SOLUTION_CHANGED</problemStatisticType>

 </problemBenchmarks>

 <solver>

 <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</

solutionClass>

 <planningEntityClass>org.optaplanner.examples.nqueens.domain.Queen</

planningEntityClass>

 <scoreDirectorFactory>

 <scoreDefinitionType>SIMPLE</scoreDefinitionType>

 <scoreDrl>/org/optaplanner/examples/nqueens/solver/

nQueensScoreRules.drl</scoreDrl>

 </scoreDirectorFactory>

 <termination>

 <maximumSecondsSpend>20</maximumSecondsSpend>

 </termination>

 <constructionHeuristic>

 <constructionHeuristicType>FIRST_FIT_DECREASING</

constructionHeuristicType>

 <constructionHeuristicPickEarlyType>FIRST_LAST_STEP_SCORE_EQUAL_OR_IMPROVING</

constructionHeuristicPickEarlyType>

 </constructionHeuristic>

 </solver>

 </inheritedSolverBenchmark>

 <solverBenchmark>

 <name>Entity tabu</name>

 <solver>

Building and running a PlannerBenchmark

187

 <localSearch>

 <changeMoveSelector>

 <selectionOrder>ORIGINAL</selectionOrder>

 </changeMoveSelector>

 <acceptor>

 <entityTabuSize>5</entityTabuSize>

 </acceptor>

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

 <solverBenchmark>

 <name>Value tabu</name>

 <solver>

 <localSearch>

 <changeMoveSelector>

 <selectionOrder>ORIGINAL</selectionOrder>

 </changeMoveSelector>

 <acceptor>

 <valueTabuSize>5</valueTabuSize>

 </acceptor>

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

 <solverBenchmark>

 <name>Move tabu</name>

 <solver>

 <localSearch>

 <changeMoveSelector>

 <selectionOrder>ORIGINAL</selectionOrder>

 </changeMoveSelector>

 <acceptor>

 <moveTabuSize>5</moveTabuSize>

 </acceptor>

 <forager>

 <pickEarlyType>NEVER</pickEarlyType>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

</plannerBenchmark>

Chapter 13. Benchmarking and ...

188

This PlannerBenchmark will try 3 configurations (1 move tabu, 1 entity tabu and 1 value tabu) on

2 data sets (32 and 64 queens), so it will run 6 solvers.

Every solverBenchmark element contains a solver configuration (for example with a local search

solver phase) and one or more inputSolutionFile elements. It will run the solver configuration

on each of those unsolved solution files. The element name is optional, because it is generated if

absent. The inputSolutionFile is read by a ProblemIO.

To lower verbosity, the common part of multiple solverBenchmark entities can be

extracted to the inheritedSolverBenchmark element. Yet, every element can still be

overwritten per solverBenchmark element. Note that inherited solver phases such as

<constructionHeuristic> or <localSearch> are not overwritten but instead are added to the

tail of the solver phases list.

You need to specify a benchmarkDirectory (relative to the working directory). A benchmark

report will be written in that directory.

Note

It's recommended that the benchmarkDirectory is a directory ignored for source

control and not cleaned by your build system. This way the generated files are not

bloating your source control and they aren't lost when doing a build. Usually that

directory is called local.

13.2.3. ProblemIO: input and output of Solution files

13.2.3.1. ProblemIO interface

The benchmarker needs to be able to read the input files to contain a Solution write the best

Solution of each benchmark to an output file. For that it uses a class that implements the

ProblemIO interface:

public interface ProblemIO {

 String getFileExtension();

 Solution read(File inputSolutionFile);

 void write(Solution solution, File outputSolutionFile);

}

ProblemIO: input and output of Solution files

189

Warning

Your input files need to have been written with the same ProblemIO class as they

are being read by the benchmarker.

13.2.3.2. XStreamProblemIO: the default ProblemIO

By default, a benchmarker uses a XStreamProblemIO instance to read and write solutions.

You need to tell the benchmarker about your Solution class which is annotated with XStream

annotations:

 <problemBenchmarks>

 <xstreamAnnotatedClass>org.optaplanner.examples.nqueens.domain.NQueens</

xstreamAnnotatedClass>

 <inputSolutionFile>data/nqueens/unsolved/unsolvedNQueens32.xml</

inputSolutionFile>

 ...

 </problemBenchmarks>

Your input files need to have been written with a XStreamProblemIO instance, not just any

XStream instance, because the XStreamProblemIO uses a customized XStream instance.

Warning

XStream (and XML in general) is a very verbose format. Reading or writing

large datasets in this format can cause an OutOfMemoryError and performance

degradation.

13.2.3.3. Custom ProblemIO

Alternatively, you can implement your own ProblemIO implementation and configure it with the

problemIOClass element:

 <problemBenchmarks>

 <problemIOClass>org.optaplanner.examples.machinereassignment.persistence.MachineReassignmentProblemIO</

problemIOClass>

 <inputSolutionFile>data/machinereassignment/input/model_a1_1.txt</

inputSolutionFile>

 ...

 </problemBenchmarks>

Chapter 13. Benchmarking and ...

190

Warning

A ProblemIO implementation must be thread-safe.

13.2.4. Writing the output solution of the benchmark runs

The best solution of each benchmark run can be written to the in the benchmarkDirectory. By

default, this is disabled, because the files are rarely used and considered bloat. Also, on large

datasets, writing the best solution of each single benchmark can take quite some time and memory

(causing an OutOfMemoryError), especially in a verbose format like XStream.

You can enable to write the output solution in the benchmarkDirectory with

writeOutputSolutionEnabled:

 <problemBenchmarks>

 ...

 <writeOutputSolutionEnabled>true</writeOutputSolutionEnabled>

 ...

 </problemBenchmarks>

13.2.5. Warming up the HotSpot compiler

Without a warm up, the results of the first (or first few) benchmarks are not reliable, because

they will have lost CPU time on HotSpot JIT compilation (and possibly DRL compilation too).

The avoid that distortion, the benchmarker can run some of the benchmarks for a specified amount

of time, before running the real benchmarks. Generally, a warm up of 30 seconds suffices:

<plannerBenchmark>

 ...

 <warmUpSecondsSpend>30</warmUpSecondsSpend>

 ...

</plannerBenchmark>

13.3. Benchmark report

13.3.1. HTML report

After the running a benchmark, a HTML report will be written in the benchmarkDirectory with the

filename index.html. Open it in your browser. It has a nice overview of your benchmark including:

• Summary statistics: graphs and tables

Summary statistics

191

• Problem statistics per inputSolutionFile

• Each solver configuration (ranked): easy to copy and paste.

• Benchmark information

The HTML report will use your default locale to format numbers. If you need to share

the benchmark report with people from another country, you might want to overwrite the

benchmarkReportLocale:

<plannerBenchmark>

 ...

 <benchmarkReportLocale>en_US</benchmarkReportLocale>

 ...

</plannerBenchmark>

13.3.2. Summary statistics

13.3.2.1. Best score summary

Shows the best score per inputSolutionFile and solver configuration.

Chapter 13. Benchmarking and ...

192

Figure 13.1. Best score summary statistic

13.3.3. Statistic per data set (graph and CSV)

13.3.3.1. Enabling a problem statistic

The benchmarker supports outputting problem statistics as graphs and CSV (comma separated

values) files to the benchmarkDirectory.

To configure graph and CSV output of a statistic, just add a problemStatisticType line:

<plannerBenchmark>

 <benchmarkDirectory>local/data/nqueens/solved</benchmarkDirectory>

 <inheritedSolverBenchmark>

 <problemBenchmarks>

 ...

 <problemStatisticType>BEST_SOLUTION_CHANGED</problemStatisticType>

 <problemStatisticType>CALCULATE_COUNT_PER_SECOND</problemStatisticType>

 </problemBenchmarks>

Statistic per data set (graph and CSV)

193

 ...

 </inheritedSolverBenchmark>

 ...

</plannerBenchmark>

Multiple problemStatisticType elements are allowed. Some statistic types might influence

performance and benchmark results noticeably. The following types are supported:

13.3.3.2. Best score over time statistic (graph and CSV)

To see how the best score evolves over time, add BEST_SOLUTION_CHANGED as a

problemStatisticType.

Figure 13.2. Best score over time statistic

The best score over time statistic is very useful to detect abnormalities, such as score

traps.

Chapter 13. Benchmarking and ...

194

Note

Don't be fooled by the simulated annealing line in this graph. If you give simulated

annealing only 5 minutes, it might still be better than 5 minutes of tabu search.

That's because this simulated annealing implementation automatically determines

its velocity based on the amount of time that can be spend. On the other hand, for

the tabu search, what you see is what you'd get.

13.3.3.3. Calculate count per second statistic (graph and CSV)

To see how fast the scores are calculated, add CALCULATE_COUNT_PER_SECOND as a

problemStatisticType.

Figure 13.3. Calculate count per second statistic

Ranking the Solvers

195

Note

The initial high calculate count is typical during solution initialization. In this

example, it's far easier to calculate the score of a solution if only a handful exams

have been added, in contrast to all of them. After those few seconds of initialization,

the calculate count is relatively stable, apart from an occasional stop-the-world

garbage collector disruption.

13.3.3.4. Memory use statistic (graph and CSV)

To see how much memory is used, add MEMORY_USE as a problemStatisticType.

Figure 13.4. Memory use statistic

13.3.4. Ranking the Solvers

The benchmark report automatically ranks the solvers. The Solver with rank 0 is called the favorite

Solver: it performs best overall, but it might not be the best on every problem. It's recommended

to use that favorite Solver in production.

Chapter 13. Benchmarking and ...

196

However, there are different ways of ranking the solvers. You can configure how:

<plannerBenchmark>

 ...

 <solverBenchmarkRankingType>TOTAL_SCORE</solverBenchmarkRankingType>

 ...

</plannerBenchmark>

The following solverBenchmarkRankingTypes are supported:

• TOTAL_SCORE (default): Maximize the overall score, so minimize the overall cost if all solutions

would be executed.

• WORST_SCORE: Minimize the worst case scenario.

• TOTAL_RANKING: Maximize the overall ranking. Use this if your datasets differ greatly in size or

difficulty, producing a difference in Score magnitude.

You can also use a custom ranking, by implementing a Comparator:

 <solverBenchmarkRankingComparatorClass>...TotalScoreSolverBenchmarkRankingComparator</

solverBenchmarkRankingComparatorClass>

Or a weight factory:

 <solverBenchmarkRankingWeightFactoryClass>...TotalRankSolverBenchmarkRankingWeightFactory</

solverBenchmarkRankingWeightFactoryClass>

13.4. Advanced benchmarking

13.4.1. Benchmarking performance tricks

13.4.1.1. Parallel benchmarking on multiple threads

If you have multiple processors available on your computer, you can run multiple benchmarks in

parallel on multiple threads to get your benchmarks results faster:

<plannerBenchmark>

 ...

 <parallelBenchmarkCount>AUTO</parallelBenchmarkCount>

 ...

Benchmarking performance tricks

197

</plannerBenchmark>

Warning

Running too many benchmarks in parallel will affect the results of benchmarks

negatively. Leave some processors unused for garbage collection and other

processes.

We tweak parallelBenchmarkCount AUTO to maximize the reliability and

efficiency of the benchmark results.

The following parallelBenchmarkCounts are supported:

• 1 (default): Run all benchmarks sequentially.

• AUTO: Let Planner decide how many benchmarks to run in parallel. This formula is based on

experience. It's recommended to prefer this over the other parallel enabling options.

• Static number: The number of benchmarks to run in parallel.

<parallelBenchmarkCount>2</parallelBenchmarkCount>

• JavaScript formula: Formula for the number of benchmarks to run in parallel. It can use the

variable availableProcessorCount. For example:

<parallelBenchmarkCount>(availableProcessorCount / 2) + 1</

parallelBenchmarkCount>

Note

The parallelBenchmarkCount is always limited to the number of available

processors. If it's higher, it will be automatically decreased.

Note

In the future, we will also support multi-JVM benchmarking. This feature

is independent of multi-threaded solving [https://issues.jboss.org/browse/

PLANNER-76] or multi-JVM solving.

https://issues.jboss.org/browse/PLANNER-76
https://issues.jboss.org/browse/PLANNER-76
https://issues.jboss.org/browse/PLANNER-76

Chapter 13. Benchmarking and ...

198

13.4.2. Template based benchmarking and matrix

benchmarking

Matrix benchmarking is benchmarking a combination of value sets. For example: benchmark 4

entityTabuSize values (5, 7, 11 and 13) combined with 3 acceptedCountLimit values (500,

1000 and 2000), resulting in 12 solver configurations.

To reduce the verbosity of such a benchmark configuration, you can use a Freemarker [http://

freemarker.sourceforge.net/] template for the benchmark configuration instead:

<plannerBenchmark>

 ...

 <inheritedSolverBenchmark>

 ...

 </inheritedSolverBenchmark>

<#list [5, 7, 11, 13] as entityTabuSize>

<#list [500, 1000, 2000] as acceptedCountLimit>

 <solverBenchmark>

 <name>entityTabuSize ${entityTabuSize} acceptedCountLimit ${acceptedCountLimit}</

name>

 <solver>

 <localSearch>

 <unionMoveSelector>

 <changeMoveSelector/>

 <swapMoveSelector/>

 </unionMoveSelector>

 <acceptor>

 <entityTabuSize>${entityTabuSize}</entityTabuSize>

 </acceptor>

 <forager>

 <acceptedCountLimit>${acceptedCountLimit}</acceptedCountLimit>

 </forager>

 </localSearch>

 </solver>

 </solverBenchmark>

</#list>

</#list>

</plannerBenchmark>

And build it with the class FreemarkerXmlPlannerBenchmarkFactory:

 PlannerBenchmarkFactory plannerBenchmarkFactory = new FreemarkerXmlPlannerBenchmarkFactory(

http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/
http://freemarker.sourceforge.net/

Template based benchmarking and matrix benchmarking

199

 "/org/optaplanner/examples/cloudbalancing/benchmark/

cloudBalancingBenchmarkConfigTemplate.xml.ftl");

 PlannerBenchmark plannerBenchmark = benchmarkFactory.buildPlannerBenchmark();

200

Chapter 14.

201

Chapter 14. Repeated planning
14.1. Introduction to repeated planning

The world constantly changes. The planning facts used to create a solution, might change before

or during the execution of that solution. There are 3 types of situations:

• Unforeseen fact changes: For example: an employee assigned to a shift calls in sick, an airplane

scheduled to take off has a technical delay, one of the machines or vehicles break down, ...

Use backup planning.

• Unknown long term future facts: For example: The hospital admissions for the next 2 weeks are

reliable, but those for week 3 and 4 are less reliable and for week 5 and beyond are not worth

planning yet. Use continuous planning.

• Constantly changing planning facts: Use real-time planning.

Waiting to start planning - to lower the risk of planning facts changing - usually isn't a good way

to deal with that. More CPU time means a better planning solution. An incomplete plan is better

than no plan.

Luckily, the OptaPlanner algorithms support planning a solution that's already (partially) planned,

known as repeated planning.

14.2. Backup planning

Backup planning is the technique of adding extra score constraints to create space in the planning

for when things go wrong. That creates a backup plan in the plan. For example: try to assign an

employee as the spare employee (1 for every 10 shifts at the same time), keep 1 hospital bed

open in each department, ...

Then, when things go wrong (one of the employees calls in sick), change the planning facts on

the original solution (delete the sick employee leave his/her shifts unassigned) and just restart the

planning, starting from that solution, which has a different score now. The construction heuristics

will fill in the newly created gaps (probably with the spare employee) and the metaheuristics will

even improve it further.

14.3. Continuous planning (windowed planning)

Continuous planning is the technique of planning one or more upcoming planning windows at the

same time and repeating that process monthly, weekly, daily or hourly. Because time is infinite,

there are infinite future windows, so planning all future windows is impossible. Instead, plan only

a fixed number of upcoming planning windows.

Past planning windows are immutable. The first upcoming planning window is considered stable

(unlikely to change), while later upcoming planning windows are considered draft (likely to change

during the next planning effort). Distant future planning windows are not planned at all.

Chapter 14. Repeated planning

202

Past planning windows have only immovable planning entities: the planning entities can no longer

be changed (they are unable to move), but some of them are still needed in the score calculation,

as they might affect some of the score constraints that apply on the upcoming planning entities.

For example: when an employee should not work more than 5 days in a row, he shouldn't work

today and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-immovable: they can be changed, but occur a certain

score penalty if they differ from their original place. For example: avoid rescheduling hospital beds

less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane

gate during the 2 hours before boarding (unless there is no alternative), ...

Notice the difference between the original planning of November 1th and the new planning of

November 5th: some planning facts (F, H, I, J, K) changed, which results in unrelated planning

entities (G) changing too.

14.3.1. Immovable planning entities

To make some planning entities immovable, simply add an entity SelectionFilter that returns

true if an entity is movable and false if it is immovable.

Real-time planning (event based planning)

203

public class MovableShiftAssignmentSelectionFilter implements SelectionFilter<ShiftAssignment> {

 public boolean accept(ScoreDirector scoreDirector, ShiftAssignment shiftAssignment) {

 ShiftDate shiftDate = shiftAssignment.getShift().getShiftDate();

 NurseRoster nurseRoster = (NurseRoster) scoreDirector.getWorkingSolution();

 return nurseRoster.getNurseRosterInfo().isInPlanningWindow(shiftDate);

 }

}

And configure it like this:

@PlanningEntity(movableEntitySelectionFilter = MovableShiftAssignmentSelectionFilter.class)

public class ShiftAssignment {

 ...

}

Warning

Custom MoveListFactory and MoveIteratorFactory implementations must

make sure that they don't move immovable entities.

14.4. Real-time planning (event based planning)

To do real-time planning, first combine backup planning and continuous planning with short

planning windows to lower the burden of real-time planning.

Chapter 14. Repeated planning

204

While the Solver is solving, an outside event might want to change one of the problem facts,

for example an airplane is delayed and needs the runway at a later time. Do not change the

problem fact instances used by the Solver while it is solving, as that will corrupt it. Instead, add a

ProblemFactChange to the Solver which it will execute in the solver thread as soon as possible.

public interface Solver {

 ...

 boolean addProblemFactChange(ProblemFactChange problemFactChange);

 boolean isEveryProblemFactChangeProcessed();

 ...

}

public interface ProblemFactChange {

Real-time planning (event based planning)

205

 void doChange(ScoreDirector scoreDirector);

}

Here's an example:

 public void deleteComputer(final CloudComputer computer) {

 solver.addProblemFactChange(new ProblemFactChange() {

 public void doChange(ScoreDirector scoreDirector) {

 CloudBalance cloudBalance = (CloudBalance) scoreDirector.getWorkingSolution();

 // First remove the planning fact from all planning entities

 that use it

 for (CloudProcess process : cloudBalance.getProcessList()) {

 if (ObjectUtils.equals(process.getComputer(), computer)) {

 scoreDirector.beforeVariableChanged(process, "computer");

 process.setComputer(null);

 scoreDirector.afterVariableChanged(process, "computer");

 }

 }

 // Next remove it the planning fact itself

 for (Iterator<CloudComputer> it = cloudBalance.getComputerList().iterator(); it.hasNext();) {

 CloudComputer workingComputer = it.next();

 if (ObjectUtils.equals(workingComputer, computer)) {

 scoreDirector.beforeProblemFactRemoved(workingComputer);

 it.remove(); // remove from list

 scoreDirector.beforeProblemFactRemoved(workingComputer);

 break;

 }

 }

 }

 });

 }

Warning

Any change on the problem facts or planning entities in a

ProblemFactChange must be done on the instances of the Solution of

scoreDirector.getWorkingSolution(). Note that these are not the same entity

instances as in the bestSolution (or therefore your user interface): they are clones.

Chapter 14. Repeated planning

206

Warning

Any change on the problem facts or planning entities in a ProblemFactChange

must be told to the ScoreDirector.

Note

Many types of changes can leave a planning entity uninitialized, resulting in a

partially initialized solution. That's fine, as long as the first solver phase can handle

it. All construction heuristics solver phases can handle that, so it's recommended

to configure such a SolverPhase as the first phase.

In essence, the Solver will stop, run the ProblemFactChange and restart. Each SolverPhase will

run again. Each configured Termination (except terminateEarly) will reset. This means the

construction heuristic will run again, but because little or no planning variables will be uninitialized

(unless you have a nullable planning variable), this won't take long.

Normally, you won't configure any Termination, just call Solver.terminateEarly() when

the results are needed. Alternatively, you can subscribe to the BestSolutionChangedEvent.

A BestSolutionChangedEvent doesn't guarantee that every ProblemFactChange has been

processed already, so check Solver.isEveryProblemFactChangeProcessed() and ignore any

BestSolutionChangedEvent fired while that method returns false.

	OptaPlanner User Guide
	Table of Contents
	
	Chapter 1. Planner introduction
	1.1. What is OptaPlanner?
	1.2. What is a planning problem?
	1.2.1. A planning problem is NP-complete
	1.2.2. A planning problem has (hard and soft) constraints
	1.2.3. A planning problem has a huge search space

	1.3. Download and run the examples
	1.3.1. Get the release zip and run the examples
	1.3.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.3.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT
	1.3.4. Build OptaPlanner from source

	1.4. Status of OptaPlanner
	1.5. Compatibility
	1.6. Questions, issues and blog

	Chapter 2. Quick start
	2.1. Cloud balancing tutorial
	2.1.1. Problem statement
	2.1.2. Problem size
	2.1.3. Domain model diagram
	2.1.4. Main method
	2.1.5. Solver configuration
	2.1.6. Domain model implementation
	2.1.6.1. The class Computer
	2.1.6.2. The class Process
	2.1.6.3. The class CloudBalance

	2.1.7. Score configuration
	2.1.7.1. Simple Java score configuration
	2.1.7.2. Drools score configuration

	2.1.8. Beyond this tutorial

	Chapter 3. Use cases and examples
	3.1. Examples overview
	3.2. Basic examples
	3.2.1. N queens
	3.2.1.1. Problem statement
	3.2.1.2. Problem size
	3.2.1.3. Domain model

	3.2.2. Cloud balancing
	3.2.3. Traveling salesman (TSP - Traveling salesman problem)
	3.2.3.1. Problem statement
	3.2.3.2. Problem size

	3.2.4. Manners 2009
	3.2.4.1. Problem statement
	3.2.4.2. Problem size

	3.3. Real examples
	3.3.1. Course timetabling (ITC 2007 track 3 - Curriculum course scheduling)
	3.3.1.1. Problem statement
	3.3.1.2. Problem size
	3.3.1.3. Domain model

	3.3.2. Machine reassignment (Google ROADEF 2012)
	3.3.2.1. Problem statement
	3.3.2.2. Problem size

	3.3.3. Vehicle routing
	3.3.3.1. Problem statement
	3.3.3.2. Problem size

	3.3.4. Hospital bed planning (PAS - Patient admission scheduling)
	3.3.4.1. Problem statement
	3.3.4.2. Problem size

	3.4. Difficult examples
	3.4.1. Exam timetabling (ITC 2007 track 1 - Examination)
	3.4.1.1. Problem statement
	3.4.1.2. Problem size
	3.4.1.3. Domain model

	3.4.2. Employee rostering (INRC 2010 - Nurse rostering)
	3.4.2.1. Problem statement
	3.4.2.2. Problem size

	3.4.3. Sport scheduling (TTP - Traveling tournament problem)
	3.4.3.1. Problem statement
	3.4.3.2. Problem size

	Chapter 4. Planner configuration
	4.1. Overview
	4.2. Solver configuration
	4.2.1. Solver configuration by XML file
	4.2.2. Solver configuration by Java API

	4.3. Model your planning problem
	4.3.1. Is this class a problem fact or planning entity?
	4.3.2. Problem fact
	4.3.3. Planning entity and planning variables
	4.3.3.1. Planning entity
	4.3.3.2. Planning entity difficulty
	4.3.3.3. Planning variable
	4.3.3.4. Nullable planning variable
	4.3.3.5. When is a planning variable considered initialized?

	4.3.4. Planning value and planning value ranges
	4.3.4.1. Planning value
	4.3.4.2. Planning value range
	4.3.4.2.1. ValueRange from Solution property
	4.3.4.2.2. ValueRange from planning entity
	4.3.4.2.3. ValueRange undefined
	4.3.4.2.4. Combining ValueRanges
	4.3.4.2.5. A ValueRange which includes other planning entities

	4.3.4.3. Chained planning variable
	4.3.4.4. Planning value strength

	4.3.5. Planning problem and planning solution
	4.3.5.1. Planning problem instance
	4.3.5.2. The Solution interface
	4.3.5.3. The getScore() and setScore() methods
	4.3.5.4. The getProblemFacts() method
	4.3.5.5. Cached problem fact
	4.3.5.6. Cloning a Solution
	4.3.5.6.1. FieldAccessingSolutionCloner
	4.3.5.6.2. Custom cloning: Make Solution implement PlanningCloneable

	4.3.5.7. Build an uninitialized solution

	4.4. Use the Solver
	4.4.1. The Solver interface
	4.4.2. Solving a problem
	4.4.3. Environment mode: Are there bugs in my code?
	4.4.3.1. FULL_ASSERT
	4.4.3.2. NON_INTRUSIVE_FULL_ASSERT
	4.4.3.3. FAST_ASSERT
	4.4.3.4. REPRODUCIBLE (default)
	4.4.3.5. PRODUCTION

	4.4.4. Logging level: What is the Solver doing?

	Chapter 5. Score calculation
	5.1. Score terminology
	5.1.1. What is a score?
	5.1.2. Score constraint signum (positive or negative)
	5.1.3. Score constraint weight
	5.1.4. Score level
	5.1.5. Pareto scoring (AKA multi-objective optimization scoring)
	5.1.6. Combining score techniques
	5.1.7. The Score interface

	5.2. Choose a Score definition
	5.2.1. SimpleScore
	5.2.2. HardSoftScore (recommended)
	5.2.3. HardMediumSoftScore
	5.2.4. BendableScore
	5.2.5. Implementing a custom Score

	5.3. Calculate the Score
	5.3.1. Score calculation types
	5.3.2. Simple Java score calculation
	5.3.3. Incremental Java score calculation
	5.3.4. Drools score calculation
	5.3.4.1. Overview
	5.3.4.2. Drools score rules configuration
	5.3.4.2.1. A scoreDrl resource on the classpath
	5.3.4.2.2. A KieBase (possibly defined by Guvnor)

	5.3.4.3. Implementing a score rule
	5.3.4.4. Weighing score rules

	5.3.5. Detecting invalid scores

	5.4. Score calculation performance tricks
	5.4.1. Overview
	5.4.2. Average calculation count per second
	5.4.3. Incremental score calculation (with delta's)
	5.4.4. Avoid calling remote services during score calculation
	5.4.5. Unused constraint
	5.4.6. Build-in hard constraint
	5.4.7. Other performance tricks
	5.4.8. Score trap
	5.4.9. stepLimit benchmark

	5.5. Reusing the score calculation outside the Solver

	Chapter 6. Optimization algorithms
	6.1. Search space size in the real world
	6.2. Does Planner find the optimal solution?
	6.3. Architecture overview
	6.4. Optimization algorithms overview
	6.5. Which optimization algorithms should I use?
	6.6. SolverPhase
	6.7. Scope overview
	6.8. Termination
	6.8.1. TimeMillisSpendTermination
	6.8.2. ScoreAttainedTermination
	6.8.3. StepCountTermination
	6.8.4. UnimprovedStepCountTermination
	6.8.5. Combining multiple Terminations
	6.8.6. Asynchronous termination from another thread

	6.9. SolverEventListener
	6.10. Custom SolverPhase

	Chapter 7. Move and neighborhood selection
	7.1. Move and neighborhood introduction
	7.1.1. What is a Move?
	7.1.2. What is a MoveSelector?
	7.1.3. Subselecting of entities, values and other moves

	7.2. General Selector features
	7.2.1. CacheType: Create moves ahead of time or Just In Time
	7.2.2. SelectionOrder: original, sorted, random, shuffled or probabilistic
	7.2.3. Recommended combinations of CacheType and SelectionOrder
	7.2.3.1. Just in time random selection (default)
	7.2.3.2. Cached shuffled selection
	7.2.3.3. Cached random selection

	7.2.4. Filtered selection
	7.2.5. Sorted selection
	7.2.5.1. Sorted selection by Comparator
	7.2.5.2. Sorted selection by SelectionSorterWeightFactory
	7.2.5.3. Sorted selection by SelectionSorter

	7.2.6. Probabilistic selection

	7.3. Generic MoveSelectors
	7.3.1. changeMoveSelector
	7.3.2. swapMoveSelector
	7.3.3. pillarSwapMoveSelector
	7.3.4. subChainChangeMoveSelector
	7.3.5. subChainSwapMoveSelector

	7.4. Combining multiple MoveSelectors
	7.4.1. unionMoveSelector
	7.4.2. cartesianProductMoveSelector

	7.5. EntitySelector
	7.6. ValueSelector
	7.7. Custom moves
	7.7.1. Which move types might be missing in my implementation?
	7.7.2. Custom moves introduction
	7.7.3. The interface Move
	7.7.4. MoveListFactory: the easy way to generate custom moves
	7.7.5. MoveIteratorFactory: generate custom moves just in time
	7.7.6. Move generation through DRL

	Chapter 8. Construction heuristics
	8.1. Overview
	8.2. First Fit
	8.2.1. Algorithm description
	8.2.2. Configuration

	8.3. First Fit Decreasing
	8.3.1. Algorithm description
	8.3.2. Configuration

	8.4. Best Fit
	8.4.1. Algorithm description
	8.4.2. Configuration

	8.5. Best Fit Decreasing
	8.5.1. Algorithm description
	8.5.2. Configuration

	8.6. Cheapest insertion
	8.6.1. Algorithm description
	8.6.2. Configuration

	8.7. Regret insertion
	8.7.1. Algorithm description
	8.7.2. Configuration

	Chapter 9. Local search
	9.1. Overview
	9.2. Hill climbing (simple local search)
	9.2.1. Algorithm description

	9.3. Tabu search
	9.3.1. Algorithm description

	9.4. Simulated annealing
	9.4.1. Algorithm description

	9.5. Late acceptance
	9.5.1. Algorithm description

	9.6. About neighborhoods, moves and steps
	9.6.1. Move generation tips
	9.6.2. A step
	9.6.3. Getting stuck in local optima

	9.7. Deciding the next step
	9.7.1. Acceptor
	9.7.1.1. Tabu search acceptor
	9.7.1.2. Simulated annealing acceptor
	9.7.1.3. Late acceptance acceptor

	9.7.2. Forager
	9.7.2.1. Accepted count limit
	9.7.2.2. Pick early type

	9.8. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor

	Chapter 10. Evolutionary algorithms
	10.1. Overview
	10.2. Evolutionary Strategies
	10.3. Genetic algorithms

	Chapter 11. Hyperheuristics
	11.1. Overview

	Chapter 12. Exact methods
	12.1. Overview
	12.2. Brute Force
	12.2.1. Algorithm description
	12.2.2. Configuration

	12.3. Depth-first search
	12.3.1. Algorithm description
	12.3.2. Configuration

	Chapter 13. Benchmarking and tweaking
	13.1. Finding the best Solver configuration
	13.2. Doing a benchmark
	13.2.1. Adding the extra dependency
	13.2.2. Building and running a PlannerBenchmark
	13.2.3. ProblemIO: input and output of Solution files
	13.2.3.1. ProblemIO interface
	13.2.3.2. XStreamProblemIO: the default ProblemIO
	13.2.3.3. Custom ProblemIO

	13.2.4. Writing the output solution of the benchmark runs
	13.2.5. Warming up the HotSpot compiler

	13.3. Benchmark report
	13.3.1. HTML report
	13.3.2. Summary statistics
	13.3.2.1. Best score summary

	13.3.3. Statistic per data set (graph and CSV)
	13.3.3.1. Enabling a problem statistic
	13.3.3.2. Best score over time statistic (graph and CSV)
	13.3.3.3. Calculate count per second statistic (graph and CSV)
	13.3.3.4. Memory use statistic (graph and CSV)

	13.3.4. Ranking the Solvers

	13.4. Advanced benchmarking
	13.4.1. Benchmarking performance tricks
	13.4.1.1. Parallel benchmarking on multiple threads

	13.4.2. Template based benchmarking and matrix benchmarking

	Chapter 14. Repeated planning
	14.1. Introduction to repeated planning
	14.2. Backup planning
	14.3. Continuous planning (windowed planning)
	14.3.1. Immovable planning entities

	14.4. Real-time planning (event based planning)

