JBoss.orgCommunity Documentation

OptaPlanner User Guide

Version 6.4.0.Final


1. OptaPlanner Introduction
1.1. What is OptaPlanner?
1.2. Requirements
1.3. What is a Planning Problem?
1.3.1. A Planning Problem is NP-complete or NP-hard
1.3.2. A Planning Problem Has (Hard and Soft) Constraints
1.3.3. A Planning Problem Has a Huge Search Space
1.4. Download and Run the Examples
1.4.1. Get the Release .zip and Run the Examples
1.4.2. Run the Examples in an IDE (IntelliJ, Eclipse, NetBeans)
1.4.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr or ANT
1.4.4. Build OptaPlanner from Source
1.5. Governance
1.5.1. Status of OptaPlanner
1.5.2. Backwards Compatibility
1.5.3. Community and Support
1.5.4. Relationship with Drools and jBPM
2. Quick Start
2.1. Cloud Balancing Tutorial
2.1.1. Problem Description
2.1.2. Problem Size
2.1.3. Domain Model Design
2.1.4. Main Method
2.1.5. Solver Configuration
2.1.6. Domain Model Implementation
2.1.7. Score Configuration
2.1.8. Beyond this Tutorial
3. Use Cases and Examples
3.1. Examples Overview
3.2. Basic Examples
3.2.1. N Queens
3.2.2. Cloud Balancing
3.2.3. Traveling Salesman (TSP - Traveling Salesman Problem)
3.2.4. Dinner Party
3.2.5. Tennis Club Scheduling
3.2.6. Meeting Scheduling
3.3. Real Examples
3.3.1. Course Timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling)
3.3.2. Machine Reassignment (Google ROADEF 2012)
3.3.3. Vehicle Routing
3.3.4. Project Job Scheduling
3.3.5. Hospital Bed Planning (PAS - Patient Admission Scheduling)
3.4. Difficult Examples
3.4.1. Exam Timetabling (ITC 2007 track 1 - Examination)
3.4.2. Employee Rostering (INRC 2010 - Nurse Rostering)
3.4.3. Traveling Tournament Problem (TTP)
3.4.4. Cheap Time Scheduling
3.4.5. Investment asset class allocation (portfolio optimization)
4. Planner Configuration
4.1. Overview
4.2. Solver Configuration
4.2.1. Solver Configuration by XML
4.2.2. Solver Configuration by Java API
4.2.3. Annotations Configuration
4.3. Model a Planning Problem
4.3.1. Is This Class a Problem Fact or Planning Entity?
4.3.2. Problem Fact
4.3.3. Planning Entity
4.3.4. Planning Variable
4.3.5. Planning Value and Planning Value Range
4.3.6. Shadow Variable
4.3.7. Planning Problem and Planning Solution
4.4. Use the Solver
4.4.1. The Solver Interface
4.4.2. Solving a Problem
4.4.3. Environment Mode: Are There Bugs in my Code?
4.4.4. Logging Level: What is the Solver Doing?
4.4.5. Random Number Generator
5. Score Calculation
5.1. Score Terminology
5.1.1. What is a Score?
5.1.2. Score Constraint Signum (Positive or Negative)
5.1.3. Score Constraint Weight
5.1.4. Score Constraint Level (hard, soft, ...)
5.1.5. Pareto Scoring (AKA Multi-objective Optimization Scoring)
5.1.6. Combining Score Techniques
5.1.7. Score interface
5.1.8. Avoid Floating Point Numbers in Score Calculation
5.2. Choose a Score Definition
5.2.1. SimpleScore
5.2.2. HardSoftScore (Recommended)
5.2.3. HardMediumSoftScore
5.2.4. BendableScore
5.2.5. Implementing a Custom Score
5.3. Calculate the Score
5.3.1. Score Calculation Types
5.3.2. Easy Java Score Calculation
5.3.3. Incremental Java Score Calculation
5.3.4. Drools Score Calculation
5.3.5. InitializingScoreTrend
5.3.6. Invalid Score Detection
5.4. Score Calculation Performance Tricks
5.4.1. Overview
5.4.2. Average Calculation Count Per Second
5.4.3. Incremental Score Calculation (with Deltas)
5.4.4. Avoid Calling Remote Services During Score Calculation
5.4.5. Pointless Constraints
5.4.6. Built-in Hard Constraint
5.4.7. Other Score Calculation Performance Tricks
5.4.8. Score Trap
5.4.9. stepLimit Benchmark
5.4.10. Fairness Score Constraints
5.5. Explaining the Score: Using Score Calculation Outside the Solver
6. Optimization Algorithms
6.1. Search Space Size in the Real World
6.2. Does Planner Find the Optimal Solution?
6.3. Architecture Overview
6.4. Optimization Algorithms Overview
6.5. Which Optimization Algorithms Should I Use?
6.6. Power tweaking or default parameter values
6.7. Solver Phase
6.8. Scope Overview
6.9. Termination
6.9.1. TimeMillisSpentTermination
6.9.2. UnimprovedTimeMillisSpentTermination
6.9.3. BestScoreTermination
6.9.4. BestScoreFeasibleTermination
6.9.5. StepCountTermination
6.9.6. UnimprovedStepCountTermination
6.9.7. CalculateCountTermination
6.9.8. Combining Multiple Terminations
6.9.9. Asynchronous Termination from Another Thread
6.10. SolverEventListener
6.11. Custom Solver Phase
7. Move and Neighborhood Selection
7.1. Move and Neighborhood Introduction
7.1.1. What is a Move?
7.1.2. What is a MoveSelector?
7.1.3. Subselecting of Entities, Values and Other Moves
7.2. Generic MoveSelectors
7.2.1. changeMoveSelector
7.2.2. swapMoveSelector
7.2.3. pillarChangeMoveSelector
7.2.4. pillarSwapMoveSelector
7.2.5. tailChainSwapMoveSelector or 2-opt (chained variables only)
7.2.6. subChainChangeMoveSelector (chained variables only)
7.2.7. subChainSwapMoveSelector (chained variables only)
7.3. Combining Multiple MoveSelectors
7.3.1. unionMoveSelector
7.3.2. cartesianProductMoveSelector
7.4. EntitySelector
7.5. ValueSelector
7.6. General Selector Features
7.6.1. CacheType: Create Moves Ahead of Time or Just In Time
7.6.2. SelectionOrder: Original, Sorted, Random, Shuffled or Probabilistic
7.6.3. Recommended Combinations of CacheType and SelectionOrder
7.6.4. Filtered Selection
7.6.5. Sorted Selection
7.6.6. Probabilistic Selection
7.6.7. Limited Selection
7.6.8. Mimic Selection (Record/Replay)
7.6.9. Nearby Selection
7.7. Custom Moves
7.7.1. Which Move Types Might be Missing in my Implementation?
7.7.2. Custom Moves Introduction
7.7.3. The Interface Move
7.7.4. MoveListFactory: the Easy Way to Generate Custom Moves
7.7.5. MoveIteratorFactory: Generate Custom Moves Just in Time
8. Exhaustive Search
8.1. Overview
8.2. Brute Force
8.2.1. Algorithm Description
8.2.2. Configuration
8.3. Branch And Bound
8.3.1. Algorithm Description
8.3.2. Configuration
8.4. Scalability of Exhaustive Search
9. Construction Heuristics
9.1. Overview
9.2. First Fit
9.2.1. Algorithm Description
9.2.2. Configuration
9.3. First Fit Decreasing
9.3.1. Algorithm Description
9.3.2. Configuration
9.4. Weakest Fit
9.4.1. Algorithm Description
9.4.2. Configuration
9.5. Weakest Fit Decreasing
9.5.1. Algorithm Description
9.5.2. Configuration
9.6. Strongest Fit
9.6.1. Algorithm Description
9.6.2. Configuration
9.7. Strongest Fit Decreasing
9.7.1. Algorithm Description
9.7.2. Configuration
9.8. Allocate Entity From Queue
9.8.1. Algorithm Description
9.8.2. Configuration
9.8.3. Multiple Variables
9.8.4. Multiple Entity Classes
9.8.5. Pick Early Type
9.9. Allocate To Value From Queue
9.9.1. Algorithm Description
9.9.2. Configuration
9.10. Cheapest Insertion
9.10.1. Algorithm Description
9.10.2. Configuration
9.11. Regret Insertion
9.11.1. Algorithm Description
9.11.2. Configuration
9.12. Allocate From Pool
9.12.1. Algorithm Description
9.12.2. Configuration
10. Local Search
10.1. Overview
10.2. Local Search Concepts
10.2.1. Step by Step
10.2.2. Decide the Next Step
10.2.3. Acceptor
10.2.4. Forager
10.3. Hill Climbing (Simple Local Search)
10.3.1. Algorithm Description
10.3.2. Stuck in Local Optima
10.3.3. Configuration
10.4. Tabu Search
10.4.1. Algorithm Description
10.4.2. Configuration
10.5. Simulated Annealing
10.5.1. Algorithm Description
10.5.2. Configuration
10.6. Late Acceptance
10.6.1. Algorithm Description
10.6.2. Configuration
10.7. Step Counting Hill Climbing
10.7.1. Algorithm Description
10.7.2. Configuration
10.8. Strategic Oscillation
10.8.1. Algorithm Description
10.8.2. Configuration
10.9. Using a Custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor
11. Evolutionary Algorithms
11.1. Overview
11.2. Evolutionary Strategies
11.3. Genetic Algorithms
12. Hyperheuristics
12.1. Overview
13. Partitioned Search
13.1. Overview
14. Benchmarking And Tweaking
14.1. Find The Best Solver Configuration
14.2. Benchmark Configuration
14.2.1. Add Dependency On optaplanner-benchmark
14.2.2. Build And Run A PlannerBenchmark
14.2.3. SolutionFileIO: Input And Output Of Solution Files
14.2.4. Warming Up The HotSpot Compiler
14.2.5. Benchmark Blueprint: A Predefined Configuration
14.2.6. Write The Output Solution Of Benchmark Runs
14.2.7. Benchmark Logging
14.3. Benchmark Report
14.3.1. HTML Report
14.3.2. Ranking The Solvers
14.4. Summary Statistics
14.4.1. Best Score Summary (Graph And Table)
14.4.2. Best Score Scalability Summary (Graph)
14.4.3. Best Score Distribution Summary (Graph)
14.4.4. Winning Score Difference Summary (Graph And Table)
14.4.5. Worst Score Difference Percentage (ROI) Summary (Graph and Table)
14.4.6. Average Calculation Count Summary (Graph and Table)
14.4.7. Time Spent Summary (Graph And Table)
14.4.8. Time Spent Scalability Summary (Graph)
14.4.9. Best Score Per Time Spent Summary (Graph)
14.5. Statistic Per Dataset (Graph And CSV)
14.5.1. Enable A Problem Statistic
14.5.2. Best Score Over Time Statistic (Graph And CSV)
14.5.3. Step Score Over Time Statistic (Graph And CSV)
14.5.4. Calculate Count Per Second Statistic (Graph And CSV)
14.5.5. Best Solution Mutation Over Time Statistic (Graph And CSV)
14.5.6. Move Count Per Step Statistic (Graph And CSV)
14.5.7. Memory Use Statistic (Graph And CSV)
14.6. Statistic Per Single Benchmark (Graph And CSV)
14.6.1. Enable A Single Statistic
14.6.2. Constraint Match Total Best Score Over Time Statistic (Graph And CSV)
14.6.3. Constraint Match Total Step Score Over Time Statistic (Graph And CSV)
14.6.4. Picked Move Type Best Score Diff Over Time Statistic (Graph And CSV)
14.6.5. Picked Move Type Step Score Diff Over Time Statistic (Graph And CSV)
14.7. Advanced Benchmarking
14.7.1. Benchmarking Performance Tricks
14.7.2. Statistical Benchmarking
14.7.3. Template Based Benchmarking And Matrix Benchmarking
14.7.4. Benchmark Report Aggregation
15. Repeated Planning
15.1. Introduction to Repeated Planning
15.2. Backup Planning
15.3. Overconstrained Planning
15.4. Continuous Planning (Windowed Planning)
15.4.1. Immovable Planning Entities
15.4.2. Nonvolatile Replanning to minimize disruption (Semi-movable Planning Entities)
15.5. Real-time Planning
15.5.1. ProblemFactChange
15.5.2. Daemon: solve() Does Not Return
16. Integration
16.1. Overview
16.2. Persistent Storage
16.2.1. Database: JPA and Hibernate
16.2.2. XML or JSON: XStream
16.2.3. XML or JSON: JAXB
16.3. SOA and ESB
16.3.1. Camel and Karaf
16.4. Other Environments
16.4.1. JBoss Modules, WildFly and JBoss EAP
16.4.2. OSGi
16.4.3. Android
16.5. Integration with Human Planners (Politics)
17. Design Patterns
17.1. Design Patterns Introduction
17.2. Assigning Time to Planning Entities
17.2.1. Timeslot Pattern: Assign to a Fixed-Length Timeslot
17.2.2. TimeGrain Pattern: Assign to a Starting TimeGrain
17.2.3. Chained Through Time Pattern: Assign in a Chain that Determines Starting Time
17.3. Multi-stage planning
18. Development
18.1. Methodology Overview
18.2. Development guidelines

OptaPlanner is a lightweight, embeddable constraint satisfaction engine which optimizes planning problems. It solves use cases such as:

  • Employee shift rostering: timetabling nurses, repairmen, ...

  • Agenda scheduling: scheduling meetings, appointments, maintenance jobs, advertisements, ...

  • Educational timetabling: scheduling lessons, courses, exams, conference presentations, ...

  • Vehicle routing: planning vehicles (trucks, trains, boats, airplanes, ...) with freight and/or people

  • Bin packing: filling containers, trucks, ships and storage warehouses, but also cloud computers nodes, ...

  • Job shop scheduling: planning car assembly lines, machine queue planning, workforce task planning, ...

  • Cutting stock: minimizing waste while cutting paper, steel, carpet, ...

  • Sport scheduling: planning football leagues, baseball leagues, ...

  • Financial optimization: investment portfolio optimization, risk spreading, ...

Every organization faces planning problems: provide products or services with a limited set of constrained resources (employees, assets, time and money). OptaPlanner optimizes such planning to do more business with less resources. This is known as Constraint Satisfaction Programming (which is part of the Operations Research discipline).

OptaPlanner helps normal JavaTM programmers solve constraint satisfaction problems efficiently. Under the hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

OptaPlanner is open source software, released under the Apache Software License 2.0. This license is very liberal and allows reuse for commercial purposes. Read the layman's explanation.

OptaPlanner is 100% pure JavaTM and runs on any JVM 1.6 or higher. It integrates very easily with other JavaTM technologies. OptaPlanner is available in the Maven Central Repository.

All the use cases above are probably NP-complete or harder. In layman's terms, NP-complete means:

  • It's easy to verify a given solution to a problem in reasonable time.

  • There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

Note

(*) At least, none of the smartest computer scientists in the world have found such a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for every NP-complete problem.

In fact, there's a $ 1,000,000 reward for anyone that proves if such a silver bullet actually exists or not.

The implication of this is pretty dire: solving your problem is probably harder than you anticipated, because the 2 common techniques won't suffice:

  • A Brute Force algorithm (even a smarter variant) will take too long.

  • A quick algorithm, for example in bin packing, putting in the largest items first, will return a solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a good solution in reasonable time for such planning problems.

A planning problem has a number of solutions. There are several categories of solutions:

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a small dataset. As you can see in the examples, most instances have a lot more possible solutions than the minimal number of atoms in the known universe (10^80). Because there is no silver bullet to find the optimal solution, any implementation is forced to evaluate at least a subset of all those possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly large number of possible solutions. Depending on the use case, some optimization algorithms perform better than others, but it's impossible to tell in advance. With OptaPlanner, it is easy to switch the optimization algorithm, by changing the solver configuration in a few lines of XML or code.

To try it now:

  1. Download a release zip of OptaPlanner from the OptaPlanner website and unzip it.

  2. Open the directory examples and run the script.

    Linux or Mac:

    $ cd examples
    $ ./runExamples.sh

    Windows:

    $ cd examples
    $ runExamples.bat

The Examples GUI application will open. Pick an example to try it out:

Note

OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a mobile JVM as it does on the desktop.

Besides the GUI examples, there are also a set of webexamples to try out:

  1. Download a JEE application server, such as JBoss EAP or WildFly and unzip it.

  2. Download a release zip of OptaPlanner from the OptaPlanner website and unzip it.

  3. Open the directory webexamples and deploy the optaplanner-webexamples-*.war file on the JEE application server.

  4. Surf to http://localhost:8080/optaplanner-webexamples-*/ (replace the * with the actual version).

Note

The webexamples (but not OptaPlanner itself) require several JEE API's (such as Servlet, JAX-RS and CDI) to run. To successfully deploy optaplanner-webexamples-*.war on a servlet container (such as Jetty or Tomcat), instead of on a real JEE application server (such as WildFly), add the missing implementation libraries (for example RestEasy and Weld) in the war manually.

Pick an example to try it out, such as the Vehicle Routing example:

The OptaPlanner jars are also available in the central maven repository (and also in the JBoss maven repository).

If you use Maven, add a dependency to optaplanner-core in your project's pom.xml:

    <dependency>
      <groupId>org.optaplanner</groupId>
      <artifactId>optaplanner-core</artifactId>
    </dependency>

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the central maven repository.

Because you might end up using other OptaPlanner modules too, it's recommended to import the optaplanner-bom in Maven's dependencyManagement so the OptaPlanner version is specified only once:

  <dependencyManagement>
    <dependencies>
      <dependency>
        <groupId>org.optaplanner</groupId>
        <artifactId>optaplanner-bom</artifactId>
        <type>pom</type>
        <version>...</version>
        <scope>import</scope>
      </dependency>
      ...
    </dependencies>
  </dependencyManagement>

If you're still using ANT (without Ivy), copy all the jars from the download zip's binaries directory in your classpath.

Note

The download zip's binaries directory contains far more jars then optaplanner-core actually uses. It also contains the jars used by other modules, such as optaplanner-benchmark.

Check the maven repository pom.xml files to determine the minimal dependency set of a specific module (for a specific version).

It's easy to build OptaPlanner from source:

  1. Set up Git and clone optaplanner from GitHub (or alternatively, download the zipball):

    $ git clone git@github.com:droolsjbpm/optaplanner.git optaplanner
    ...

    Note

    If you don't have a GitHub account or your local Git installation isn't configured with it, use this command instead, to avoid an authentication issue:

    $ git clone https://github.com/droolsjbpm/optaplanner.git optaplanner
    ...
  2. Build it with Maven:

    $ cd optaplanner
    $ mvn clean install -DskipTests
    ...

    Note

    The first time, Maven might take a long time, because it needs to download jars.

  3. Run the examples:

    $ cd optaplanner-examples
    $ mvn exec:java
    ...
  4. Edit the sources in your favorite IDE.

  5. Optional: use a Java profiler.

OptaPlanner separates its API and implementation:

Note

This documentation covers some impl classes too. Those documented impl classes are reliable and safe to use (unless explicitly marked as experimental in this documentation), but we're just not entirely comfortable yet to write their signatures in stone.

For news and articles, check our blog, Google+ (OptaPlanner, Geoffrey De Smet) and twitter (OptaPlanner, Geoffrey De Smet). If OptaPlanner helps you, help us by blogging or tweeting about it!

Public questions are welcome on our community forum. Bugs and feature requests are welcome in our issue tracker. Pull requests are very welcome on GitHub and get priority treatment! By open sourcing your improvements, you 'll benefit from our peer review and from our improvements made on top of your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support and consulting, take a look at the BRMS and BPMS products (which contain OptaPlanner) or contact Red Hat.

OptaPlanner is part of the KIE group of projects. It releases regularly (often once or twice per month) together with the Drools rule engine and the jBPM workflow engine.

See the architecture overview to learn more about the optional integration with Drools.

Suppose your company owns a number of cloud computers and needs to run a number of processes on those computers. Assign each process to a computer under the following four constraints.

The following hard constraints must be fulfilled:

The following soft constraints should be optimized:

This problem is a form of bin packing. The following is a simplified example, where we assign four processes to two computers with two constraints (CPU and RAM) with a simple algorithm:

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger processes first and assigns the smaller processes to the remaining space. As you can see, it is not optimal, as it does not leave enough room to assign the yellow process "D".

Planner does find the more optimal solution fast by using additional, smarter algorithms. It also scales: both in data (more processes, more computers) and constraints (more hardware requirements, other constraints). So see how Planner can be used in this scenario.

Try it yourself. Download and configure the examples in your preferred IDE. Run org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWorld. By default, it is configured to run for 120 seconds. It will execute this code:


The code example does the following:

  • Build the Solver based on a solver configuration (in this case an XML file from the classpath).

            SolverFactory<CloudBalance> solverFactory = SolverFactory.createFromXmlResource(
                    "org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
            Solver solver<CloudBalance> = solverFactory.buildSolver();
  • Load the problem. CloudBalancingGenerator generates a random problem: you will replace this with a class that loads a real problem, for example from a database.

            CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator().createCloudBalance(400, 1200);
  • Solve the problem.

            CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);
  • Display the result.

            System.out.println("\nSolved cloudBalance with 400 computers and 1200 processes:\n"
                    + toDisplayString(solvedCloudBalance));

The only complicated part is building the Solver, as detailed in the next section.

Take a look at the solver configuration:


This solver configuration consists of three parts:

Let's examine the domain model classes and the score configuration.

The CloudBalance class implements the Solution interface. It holds a list of all computers and processes. We need to tell Planner how to retrieve the collection of processes that it can change, therefore we must annotate the getter getProcessList with @PlanningEntityCollectionProperty.

The CloudBalance class also has a property score, which is the Score of that Solution instance in its current state:


The getProblemFacts() method is only needed for score calculation with Drools. It is not needed for the other score calculation types.

Planner will search for the Solution with the highest Score. This example uses a HardSoftScore, which means Planner will look for the solution with no hard constraints broken (fulfill hardware requirements) and as little as possible soft constraints broken (minimize maintenance cost).

Of course, Planner needs to be told about these domain-specific score constraints. There are several ways to implement such a score function:

Let's take a look at two different implementations:

One way to define a score function is to implement the interface EasyScoreCalculator in plain Java.

  <scoreDirectorFactory>
    <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>
    <easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.solver.score.CloudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
  </scoreDirectorFactory>

Just implement the calculateScore(Solution) method to return a HardSoftScore instance.


Even if we optimize the code above to use Maps to iterate through the processList only once, it is still slow because it does not do incremental score calculation. To fix that, either use an incremental Java score function or a Drools score function. Let's take a look at the latter.

To use the Drools rule engine as a score function, simply add a scoreDrl resource in the classpath:

  <scoreDirectorFactory>
    <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>
    <scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</scoreDrl>
  </scoreDirectorFactory>

First, we want to make sure that all computers have enough CPU, RAM and network bandwidth to support all their processes, so we make these hard constraints:


Next, if those constraints are met, we want to minimize the maintenance cost, so we add that as a soft constraint:


If you use the Drools rule engine for score calculation, you can integrate with other Drools technologies, such as decision tables (XLS or web based), the KIE Workbench, ...

Planner has several examples. In this manual we explain mainly using the n queens example and cloud balancing example. So it's advisable to read at least those sections.

The source code of all these examples is available in the distribution zip under examples/sources and also in git under optaplanner/optaplanner-examples.

Table 3.1. Examples Overview

ExampleDomainSizeCompetition?Special features used
N queens
  • 1 entity class

  • 1 variable

  • Entity <= 256

  • Value <= 256

  • Search space <= 10^616

None
Cloud balancing
  • 1 entity class

  • 1 variable

  • Entity <= 2400

  • Value <= 800

  • Search space <= 10^6967

  • No

  • Defined by us

Traveling salesman
  • 1 entity class

  • 1 chained variable

  • Entity <= 980

  • Value <= 980

  • Search space <= 10^2927

Dinner party
  • 1 entity class

  • 1 variable

  • Entity <= 144

  • Value <= 72

  • Search space <= 10^310

  • Unrealistic

  • Decision Table spreadsheet (XLS) for score constraints

Tennis club scheduling
  • 1 entity class

  • 1 variable

  • Entity <= 72

  • Value <= 7

  • Search space <= 10^60

  • No

  • Defined by us

Meeting scheduling
  • 1 entity class

  • 2 variables

  • Entity <= 10

  • Value <= 320 and <= 5

  • Search space <= 10^320

  • No

  • Defined by us

Course timetabling
  • 1 entity class

  • 2 variables

  • Entity <= 434

  • Value <= 25 and <= 20

  • Search space <= 10^1171

Machine reassignment
  • 1 entity class

  • 1 variable

  • Entity <= 50000

  • Value <= 5000

  • Search space <= 10^184948

Vehicle routing
  • 1 entity class

  • 1 chained variable

  • 1 shadow entity class

  • 1 automatic shadow variable

  • Entity <= 134

  • Value <= 141

  • Search space <= 10^285

Vehicle routing with time windows

Extra on Vehicle routing:

  • 1 shadow variable

  • Entity <= 1000

  • Value <= 1250

  • Search space <= 10^3000

Extra on Vehicle routing:

Project job scheduling
  • 1 entity class

  • 2 variables

  • 1 shadow variable

  • Entity <= 640

  • Value <= ? and <= ?

  • Search space <= ?

Hospital bed planning
  • 1 entity class

  • 1 nullable variable

  • Entity <= 2750

  • Value <= 471

  • Search space <= 10^6851

Exam timetabling
  • 2 entity classes (same hierarchy)

  • 2 variables

  • Entity <= 1096

  • Value <= 80 and <= 49

  • Search space <= 10^3374

Employee rostering
  • 1 entity class

  • 1 variable

  • Entity <= 752

  • Value <= 50

  • Search space <= 10^1277

Traveling tournament
  • 1 entity class

  • 1 variable

  • Entity <= 1560

  • Value <= 78

  • Search space <= 10^2951

Cheap time scheduling
  • 1 entity class

  • 2 variables

  • Entity <= 500

  • Value <= 100 and <= 288

  • Search space <= 10^20078

Investment
  • 1 entity class

  • 1 variable

  • Entity <= 11

  • Value = 1000

  • Search space <= 10^4

  • No

  • Defined by us


A realistic competition is an official, independent competition:

  • that clearly defines a real-word use case

  • with real-world constraints

  • with multiple, real-world datasets

  • that expects reproducible results within a specific time limit on specific hardware

  • that has had serious participation from the academic and/or enterprise Operations Research community

These realistic competitions provide an objective comparison of Planner with competitive software and academic research.

Use a good domain model: it will be easier to understand and solve your planning problem. This is the domain model for the n queens example:

public class Column {
    
    private int index;

    // ... getters and setters
}
public class Row {
    
    private int index;

    // ... getters and setters
}
public class Queen {
    
    private Column column;
    private Row row;

    public int getAscendingDiagonalIndex() {...}
    public int getDescendingDiagonalIndex() {...}

    // ... getters and setters
}

A Queen instance has a Column (for example: 0 is column A, 1 is column B, ...) and a Row (its row, for example: 0 is row 0, 1 is row 1, ...). Based on the column and the row, the ascending diagonal line as well as the descending diagonal line can be calculated. The column and row indexes start from the upper left corner of the chessboard.

public class NQueens implements Solution<SimpleScore> {
    
    private int n;
    private List<Column> columnList;
    private List<Row> rowList;

    private List<Queen> queenList;

    private SimpleScore score;

    // ... getters and setters
}

A single NQueens instance contains a list of all Queen instances. It is the Solution implementation which will be supplied to, solved by and retrieved from the Solver. Notice that in the 4 queens example, NQueens's getN() method will always return 4.


When 2 queens share the same column, row or diagonal line, such as (*) and (**), they can attack each other.

comp01 has 24 teachers,  14 curricula,  30 courses, 160 lectures, 30 periods,  6 rooms and   53 unavailable period constraints with a search space of  10^360.
comp02 has 71 teachers,  70 curricula,  82 courses, 283 lectures, 25 periods, 16 rooms and  513 unavailable period constraints with a search space of  10^736.
comp03 has 61 teachers,  68 curricula,  72 courses, 251 lectures, 25 periods, 16 rooms and  382 unavailable period constraints with a search space of  10^653.
comp04 has 70 teachers,  57 curricula,  79 courses, 286 lectures, 25 periods, 18 rooms and  396 unavailable period constraints with a search space of  10^758.
comp05 has 47 teachers, 139 curricula,  54 courses, 152 lectures, 36 periods,  9 rooms and  771 unavailable period constraints with a search space of  10^381.
comp06 has 87 teachers,  70 curricula, 108 courses, 361 lectures, 25 periods, 18 rooms and  632 unavailable period constraints with a search space of  10^957.
comp07 has 99 teachers,  77 curricula, 131 courses, 434 lectures, 25 periods, 20 rooms and  667 unavailable period constraints with a search space of 10^1171.
comp08 has 76 teachers,  61 curricula,  86 courses, 324 lectures, 25 periods, 18 rooms and  478 unavailable period constraints with a search space of  10^859.
comp09 has 68 teachers,  75 curricula,  76 courses, 279 lectures, 25 periods, 18 rooms and  405 unavailable period constraints with a search space of  10^740.
comp10 has 88 teachers,  67 curricula, 115 courses, 370 lectures, 25 periods, 18 rooms and  694 unavailable period constraints with a search space of  10^981.
comp11 has 24 teachers,  13 curricula,  30 courses, 162 lectures, 45 periods,  5 rooms and   94 unavailable period constraints with a search space of  10^381.
comp12 has 74 teachers, 150 curricula,  88 courses, 218 lectures, 36 periods, 11 rooms and 1368 unavailable period constraints with a search space of  10^566.
comp13 has 77 teachers,  66 curricula,  82 courses, 308 lectures, 25 periods, 19 rooms and  468 unavailable period constraints with a search space of  10^824.
comp14 has 68 teachers,  60 curricula,  85 courses, 275 lectures, 25 periods, 17 rooms and  486 unavailable period constraints with a search space of  10^722.
model_a1_1 has  2 resources,  1 neighborhoods,   4 locations,    4 machines,    79 services,   100 processes and 1 balancePenalties with a search space of     10^60.
model_a1_2 has  4 resources,  2 neighborhoods,   4 locations,  100 machines,   980 services,  1000 processes and 0 balancePenalties with a search space of   10^2000.
model_a1_3 has  3 resources,  5 neighborhoods,  25 locations,  100 machines,   216 services,  1000 processes and 0 balancePenalties with a search space of   10^2000.
model_a1_4 has  3 resources, 50 neighborhoods,  50 locations,   50 machines,   142 services,  1000 processes and 1 balancePenalties with a search space of   10^1698.
model_a1_5 has  4 resources,  2 neighborhoods,   4 locations,   12 machines,   981 services,  1000 processes and 1 balancePenalties with a search space of   10^1079.
model_a2_1 has  3 resources,  1 neighborhoods,   1 locations,  100 machines,  1000 services,  1000 processes and 0 balancePenalties with a search space of   10^2000.
model_a2_2 has 12 resources,  5 neighborhoods,  25 locations,  100 machines,   170 services,  1000 processes and 0 balancePenalties with a search space of   10^2000.
model_a2_3 has 12 resources,  5 neighborhoods,  25 locations,  100 machines,   129 services,  1000 processes and 0 balancePenalties with a search space of   10^2000.
model_a2_4 has 12 resources,  5 neighborhoods,  25 locations,   50 machines,   180 services,  1000 processes and 1 balancePenalties with a search space of   10^1698.
model_a2_5 has 12 resources,  5 neighborhoods,  25 locations,   50 machines,   153 services,  1000 processes and 0 balancePenalties with a search space of   10^1698.
model_b_1  has 12 resources,  5 neighborhoods,  10 locations,  100 machines,  2512 services,  5000 processes and 0 balancePenalties with a search space of  10^10000.
model_b_2  has 12 resources,  5 neighborhoods,  10 locations,  100 machines,  2462 services,  5000 processes and 1 balancePenalties with a search space of  10^10000.
model_b_3  has  6 resources,  5 neighborhoods,  10 locations,  100 machines, 15025 services, 20000 processes and 0 balancePenalties with a search space of  10^40000.
model_b_4  has  6 resources,  5 neighborhoods,  50 locations,  500 machines,  1732 services, 20000 processes and 1 balancePenalties with a search space of  10^53979.
model_b_5  has  6 resources,  5 neighborhoods,  10 locations,  100 machines, 35082 services, 40000 processes and 0 balancePenalties with a search space of  10^80000.
model_b_6  has  6 resources,  5 neighborhoods,  50 locations,  200 machines, 14680 services, 40000 processes and 1 balancePenalties with a search space of  10^92041.
model_b_7  has  6 resources,  5 neighborhoods,  50 locations, 4000 machines, 15050 services, 40000 processes and 1 balancePenalties with a search space of 10^144082.
model_b_8  has  3 resources,  5 neighborhoods,  10 locations,  100 machines, 45030 services, 50000 processes and 0 balancePenalties with a search space of 10^100000.
model_b_9  has  3 resources,  5 neighborhoods, 100 locations, 1000 machines,  4609 services, 50000 processes and 1 balancePenalties with a search space of 10^150000.
model_b_10 has  3 resources,  5 neighborhoods, 100 locations, 5000 machines,  4896 services, 50000 processes and 1 balancePenalties with a search space of 10^184948.

CVRP instances (without time windows):

A-n32-k5  has 1 depots,  5 vehicles and  31 customers with a search space of  10^46.
A-n33-k5  has 1 depots,  5 vehicles and  32 customers with a search space of  10^48.
A-n33-k6  has 1 depots,  6 vehicles and  32 customers with a search space of  10^48.
A-n34-k5  has 1 depots,  5 vehicles and  33 customers with a search space of  10^50.
A-n36-k5  has 1 depots,  5 vehicles and  35 customers with a search space of  10^54.
A-n37-k5  has 1 depots,  5 vehicles and  36 customers with a search space of  10^56.
A-n37-k6  has 1 depots,  6 vehicles and  36 customers with a search space of  10^56.
A-n38-k5  has 1 depots,  5 vehicles and  37 customers with a search space of  10^58.
A-n39-k5  has 1 depots,  5 vehicles and  38 customers with a search space of  10^60.
A-n39-k6  has 1 depots,  6 vehicles and  38 customers with a search space of  10^60.
A-n44-k7  has 1 depots,  7 vehicles and  43 customers with a search space of  10^70.
A-n45-k6  has 1 depots,  6 vehicles and  44 customers with a search space of  10^72.
A-n45-k7  has 1 depots,  7 vehicles and  44 customers with a search space of  10^72.
A-n46-k7  has 1 depots,  7 vehicles and  45 customers with a search space of  10^74.
A-n48-k7  has 1 depots,  7 vehicles and  47 customers with a search space of  10^78.
A-n53-k7  has 1 depots,  7 vehicles and  52 customers with a search space of  10^89.
A-n54-k7  has 1 depots,  7 vehicles and  53 customers with a search space of  10^91.
A-n55-k9  has 1 depots,  9 vehicles and  54 customers with a search space of  10^93.
A-n60-k9  has 1 depots,  9 vehicles and  59 customers with a search space of 10^104.
A-n61-k9  has 1 depots,  9 vehicles and  60 customers with a search space of 10^106.
A-n62-k8  has 1 depots,  8 vehicles and  61 customers with a search space of 10^108.
A-n63-k10 has 1 depots, 10 vehicles and  62 customers with a search space of 10^111.
A-n63-k9  has 1 depots,  9 vehicles and  62 customers with a search space of 10^111.
A-n64-k9  has 1 depots,  9 vehicles and  63 customers with a search space of 10^113.
A-n65-k9  has 1 depots,  9 vehicles and  64 customers with a search space of 10^115.
A-n69-k9  has 1 depots,  9 vehicles and  68 customers with a search space of 10^124.
A-n80-k10 has 1 depots, 10 vehicles and  79 customers with a search space of 10^149.
F-n135-k7 has 1 depots,  7 vehicles and 134 customers with a search space of 10^285.
F-n45-k4  has 1 depots,  4 vehicles and  44 customers with a search space of  10^72.
F-n72-k4  has 1 depots,  4 vehicles and  71 customers with a search space of 10^131.

CVRPTW instances (with time windows):

Solomon_025_C101       has 1 depots,  25 vehicles and   25 customers with a search space of   10^34.
Solomon_025_C201       has 1 depots,  25 vehicles and   25 customers with a search space of   10^34.
Solomon_025_R101       has 1 depots,  25 vehicles and   25 customers with a search space of   10^34.
Solomon_025_R201       has 1 depots,  25 vehicles and   25 customers with a search space of   10^34.
Solomon_025_RC101      has 1 depots,  25 vehicles and   25 customers with a search space of   10^34.
Solomon_025_RC201      has 1 depots,  25 vehicles and   25 customers with a search space of   10^34.
Solomon_100_C101       has 1 depots,  25 vehicles and  100 customers with a search space of  10^200.
Solomon_100_C201       has 1 depots,  25 vehicles and  100 customers with a search space of  10^200.
Solomon_100_R101       has 1 depots,  25 vehicles and  100 customers with a search space of  10^200.
Solomon_100_R201       has 1 depots,  25 vehicles and  100 customers with a search space of  10^200.
Solomon_100_RC101      has 1 depots,  25 vehicles and  100 customers with a search space of  10^200.
Solomon_100_RC201      has 1 depots,  25 vehicles and  100 customers with a search space of  10^200.
Homberger_0200_C1_2_1  has 1 depots,  50 vehicles and  200 customers with a search space of  10^460.
Homberger_0200_C2_2_1  has 1 depots,  50 vehicles and  200 customers with a search space of  10^460.
Homberger_0200_R1_2_1  has 1 depots,  50 vehicles and  200 customers with a search space of  10^460.
Homberger_0200_R2_2_1  has 1 depots,  50 vehicles and  200 customers with a search space of  10^460.
Homberger_0200_RC1_2_1 has 1 depots,  50 vehicles and  200 customers with a search space of  10^460.
Homberger_0200_RC2_2_1 has 1 depots,  50 vehicles and  200 customers with a search space of  10^460.
Homberger_0400_C1_4_1  has 1 depots, 100 vehicles and  400 customers with a search space of 10^1040.
Homberger_0400_C2_4_1  has 1 depots, 100 vehicles and  400 customers with a search space of 10^1040.
Homberger_0400_R1_4_1  has 1 depots, 100 vehicles and  400 customers with a search space of 10^1040.
Homberger_0400_R2_4_1  has 1 depots, 100 vehicles and  400 customers with a search space of 10^1040.
Homberger_0400_RC1_4_1 has 1 depots, 100 vehicles and  400 customers with a search space of 10^1040.
Homberger_0400_RC2_4_1 has 1 depots, 100 vehicles and  400 customers with a search space of 10^1040.
Homberger_0600_C1_6_1  has 1 depots, 150 vehicles and  600 customers with a search space of 10^1666.
Homberger_0600_C2_6_1  has 1 depots, 150 vehicles and  600 customers with a search space of 10^1666.
Homberger_0600_R1_6_1  has 1 depots, 150 vehicles and  600 customers with a search space of 10^1666.
Homberger_0600_R2_6_1  has 1 depots, 150 vehicles and  600 customers with a search space of 10^1666.
Homberger_0600_RC1_6_1 has 1 depots, 150 vehicles and  600 customers with a search space of 10^1666.
Homberger_0600_RC2_6_1 has 1 depots, 150 vehicles and  600 customers with a search space of 10^1666.
Homberger_0800_C1_8_1  has 1 depots, 200 vehicles and  800 customers with a search space of 10^2322.
Homberger_0800_C2_8_1  has 1 depots, 200 vehicles and  800 customers with a search space of 10^2322.
Homberger_0800_R1_8_1  has 1 depots, 200 vehicles and  800 customers with a search space of 10^2322.
Homberger_0800_R2_8_1  has 1 depots, 200 vehicles and  800 customers with a search space of 10^2322.
Homberger_0800_RC1_8_1 has 1 depots, 200 vehicles and  800 customers with a search space of 10^2322.
Homberger_0800_RC2_8_1 has 1 depots, 200 vehicles and  800 customers with a search space of 10^2322.
Homberger_1000_C110_1  has 1 depots, 250 vehicles and 1000 customers with a search space of 10^3000.
Homberger_1000_C210_1  has 1 depots, 250 vehicles and 1000 customers with a search space of 10^3000.
Homberger_1000_R110_1  has 1 depots, 250 vehicles and 1000 customers with a search space of 10^3000.
Homberger_1000_R210_1  has 1 depots, 250 vehicles and 1000 customers with a search space of 10^3000.
Homberger_1000_RC110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^3000.
Homberger_1000_RC210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of 10^3000.

The vehicle routing with timewindows domain model makes heavily use of shadow variables. This allows it to express its constraints more naturally, because properties such as arrivalTime and departureTime, are directly available on the domain model.

In the real world, vehicles can't follow a straight line from location to location: they have to use roads and highways. From a business point of view, this matters a lot:

For the optimization algorithm, this doesn't matter much, as long as the distance between 2 points can be looked up (and are preferably precalculated). The road cost doesn't even need to be a distance, it can also be travel time, fuel cost, or a weighted function of those. There are several technologies available to precalculate road costs, such as GraphHopper (embeddable, offline Java engine), Open MapQuest (web service) and Google Maps Client API (web service).

There are also several technologies to render it, such as Leaflet and Google Maps for developers: the optaplanner-webexamples-*.war has an example which demonstrates such rendering:

It's even possible to render the actual road routes with GraphHopper or Google Map Directions, but because of route overlaps on highways, it can become harder to see the standstill order:

Take special care that the road costs between 2 points use the same optimization criteria as the one used in Planner. For example, GraphHopper etc will by default return the fastest route, not the shortest route. Don't use the km (or miles) distances of the fastest GPS routes to optimize the shortest trip in Planner: this leads to a suboptimal solution as shown below:

Contrary to popular belief, most users don't want the shortest route: they want the fastest route instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the real world, the fastest and shortest route are rarely the same.

Schedule A-1  has  2 projects,  24 jobs,   64 execution modes,  7 resources and  150 resource requirements.
Schedule A-2  has  2 projects,  44 jobs,  124 execution modes,  7 resources and  420 resource requirements.
Schedule A-3  has  2 projects,  64 jobs,  184 execution modes,  7 resources and  630 resource requirements.
Schedule A-4  has  5 projects,  60 jobs,  160 execution modes, 16 resources and  390 resource requirements.
Schedule A-5  has  5 projects, 110 jobs,  310 execution modes, 16 resources and  900 resource requirements.
Schedule A-6  has  5 projects, 160 jobs,  460 execution modes, 16 resources and 1440 resource requirements.
Schedule A-7  has 10 projects, 120 jobs,  320 execution modes, 22 resources and  900 resource requirements.
Schedule A-8  has 10 projects, 220 jobs,  620 execution modes, 22 resources and 1860 resource requirements.
Schedule A-9  has 10 projects, 320 jobs,  920 execution modes, 31 resources and 2880 resource requirements.
Schedule A-10 has 10 projects, 320 jobs,  920 execution modes, 31 resources and 2970 resource requirements.
Schedule B-1  has 10 projects, 120 jobs,  320 execution modes, 31 resources and  900 resource requirements.
Schedule B-2  has 10 projects, 220 jobs,  620 execution modes, 22 resources and 1740 resource requirements.
Schedule B-3  has 10 projects, 320 jobs,  920 execution modes, 31 resources and 3060 resource requirements.
Schedule B-4  has 15 projects, 180 jobs,  480 execution modes, 46 resources and 1530 resource requirements.
Schedule B-5  has 15 projects, 330 jobs,  930 execution modes, 46 resources and 2760 resource requirements.
Schedule B-6  has 15 projects, 480 jobs, 1380 execution modes, 46 resources and 4500 resource requirements.
Schedule B-7  has 20 projects, 240 jobs,  640 execution modes, 61 resources and 1710 resource requirements.
Schedule B-8  has 20 projects, 440 jobs, 1240 execution modes, 42 resources and 3180 resource requirements.
Schedule B-9  has 20 projects, 640 jobs, 1840 execution modes, 61 resources and 5940 resource requirements.
Schedule B-10 has 20 projects, 460 jobs, 1300 execution modes, 42 resources and 4260 resource requirements.

Assign each patient (that will come to the hospital) into a bed for each night that the patient will stay in the hospital. Each bed belongs to a room and each room belongs to a department. The arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

This problem features overconstrained datasets.

Hard constraints:

  • 2 patients must not be assigned to the same bed in the same night. Weight: -1000hard * conflictNightCount.

  • A room can have a gender limitation: only females, only males, the same gender in the same night or no gender limitation at all. Weight: -50hard * nightCount.

  • A department can have a minimum or maximum age. Weight: -100hard * nightCount.

  • A patient can require a room with specific equipment(s). Weight: -50hard * nightCount.

Medium constraints:

  • Assign every patient to a bed, unless the dataset is overconstrained. Weight: -1medium * nightCount.

Soft constraints:

  • A patient can prefer a maximum room size, for example if he/she wants a single room. Weight: -8soft * nightCount.

  • A patient is best assigned to a department that specializes in his/her problem. Weight: -10soft * nightCount.

  • A patient is best assigned to a room that specializes in his/her problem. Weight: -20soft * nightCount.

    • That room speciality should be priority 1. Weight: -10soft * (priority - 1) * nightCount.

  • A patient can prefer a room with specific equipment(s). Weight: -20soft * nightCount.

The problem is a variant on Kaho's Patient Scheduling and the datasets come from real world hospitals.

testdata01 has 4 specialisms, 2 equipments, 4 departments,  98 rooms, 286 beds, 14 nights,  652 patients and  652 admissions with a search space of 10^1601.
testdata02 has 6 specialisms, 2 equipments, 6 departments, 151 rooms, 465 beds, 14 nights,  755 patients and  755 admissions with a search space of 10^2013.
testdata03 has 5 specialisms, 2 equipments, 5 departments, 131 rooms, 395 beds, 14 nights,  708 patients and  708 admissions with a search space of 10^1838.
testdata04 has 6 specialisms, 2 equipments, 6 departments, 155 rooms, 471 beds, 14 nights,  746 patients and  746 admissions with a search space of 10^1994.
testdata05 has 4 specialisms, 2 equipments, 4 departments, 102 rooms, 325 beds, 14 nights,  587 patients and  587 admissions with a search space of 10^1474.
testdata06 has 4 specialisms, 2 equipments, 4 departments, 104 rooms, 313 beds, 14 nights,  685 patients and  685 admissions with a search space of 10^1709.
testdata07 has 6 specialisms, 4 equipments, 6 departments, 162 rooms, 472 beds, 14 nights,  519 patients and  519 admissions with a search space of 10^1387.
testdata08 has 6 specialisms, 4 equipments, 6 departments, 148 rooms, 441 beds, 21 nights,  895 patients and  895 admissions with a search space of 10^2366.
testdata09 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds, 28 nights, 1400 patients and 1400 admissions with a search space of 10^3487.
testdata10 has 4 specialisms, 4 equipments, 4 departments, 104 rooms, 308 beds, 56 nights, 1575 patients and 1575 admissions with a search space of 10^3919.
testdata11 has 4 specialisms, 4 equipments, 4 departments, 107 rooms, 318 beds, 91 nights, 2514 patients and 2514 admissions with a search space of 10^6291.
testdata12 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds, 84 nights, 2750 patients and 2750 admissions with a search space of 10^6851.
testdata13 has 5 specialisms, 4 equipments, 5 departments, 125 rooms, 368 beds, 28 nights,  907 patients and 1109 admissions with a search space of 10^2845.

Schedule each exam into a period and into a room. Multiple exams can share the same room during the same period.

Hard constraints:

Soft constraints (each of which has a parametrized penalty):

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1. Geoffrey De Smet finished 4th in that competition with a very early version of Planner. Many improvements have been made since then.

For each shift, assign a nurse to work that shift.

Hard constraints:

Soft constraints:

The problem is defined by the International Nurse Rostering Competition 2010.

There are 3 dataset types:

toy1          has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts,  6 employees,  7 shiftDates,  35 shiftAssignments and   0 requests with a search space of   10^27.
toy2          has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 employees, 28 shiftDates, 180 shiftAssignments and 140 requests with a search space of  10^234.

sprint01      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint02      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint03      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint04      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint05      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint06      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint07      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint08      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint09      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint10      has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_hint01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_late01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 employees, 28 shiftDates, 144 shiftAssignments and 139 requests with a search space of  10^144.
sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160 shiftAssignments and 150 requests with a search space of  10^160.
sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160 shiftAssignments and 150 requests with a search space of  10^160.
sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_late06 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.
sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and   0 requests with a search space of  10^152.
sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and   0 requests with a search space of  10^152.
sprint_late10 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152 shiftAssignments and 150 requests with a search space of  10^152.

medium01      has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of  10^906.
medium02      has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of  10^906.
medium03      has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of  10^906.
medium04      has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of  10^906.
medium05      has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608 shiftAssignments and 403 requests with a search space of  10^906.
medium_hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of  10^632.
medium_hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of  10^632.
medium_hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of  10^632.
medium_late01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 424 shiftAssignments and 390 requests with a search space of  10^626.
medium_late02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of  10^632.
medium_late03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 employees, 28 shiftDates, 428 shiftAssignments and 390 requests with a search space of  10^632.
medium_late04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 416 shiftAssignments and 390 requests with a search space of  10^614.
medium_late05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 452 shiftAssignments and 390 requests with a search space of  10^667.

long01        has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long02        has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long03        has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long04        has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long05        has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long_hint01   has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and   0 requests with a search space of 10^1257.
long_hint02   has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and   0 requests with a search space of 10^1257.
long_hint03   has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and   0 requests with a search space of 10^1257.
long_late01   has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and   0 requests with a search space of 10^1277.
long_late02   has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and   0 requests with a search space of 10^1277.
long_late03   has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and   0 requests with a search space of 10^1277.
long_late04   has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752 shiftAssignments and   0 requests with a search space of 10^1277.
long_late05   has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740 shiftAssignments and   0 requests with a search space of 10^1257.
1-nl04     has  6 days,  4 teams and   12 matches with a search space of    10^9.
1-nl06     has 10 days,  6 teams and   30 matches with a search space of   10^30.
1-nl08     has 14 days,  8 teams and   56 matches with a search space of   10^64.
1-nl10     has 18 days, 10 teams and   90 matches with a search space of  10^112.
1-nl12     has 22 days, 12 teams and  132 matches with a search space of  10^177.
1-nl14     has 26 days, 14 teams and  182 matches with a search space of  10^257.
1-nl16     has 30 days, 16 teams and  240 matches with a search space of  10^354.
2-bra24    has 46 days, 24 teams and  552 matches with a search space of  10^917.
3-nfl16    has 30 days, 16 teams and  240 matches with a search space of  10^354.
3-nfl18    has 34 days, 18 teams and  306 matches with a search space of  10^468.
3-nfl20    has 38 days, 20 teams and  380 matches with a search space of  10^600.
3-nfl22    has 42 days, 22 teams and  462 matches with a search space of  10^749.
3-nfl24    has 46 days, 24 teams and  552 matches with a search space of  10^917.
3-nfl26    has 50 days, 26 teams and  650 matches with a search space of 10^1104.
3-nfl28    has 54 days, 28 teams and  756 matches with a search space of 10^1309.
3-nfl30    has 58 days, 30 teams and  870 matches with a search space of 10^1534.
3-nfl32    has 62 days, 32 teams and  992 matches with a search space of 10^1778.
4-super04  has  6 days,  4 teams and   12 matches with a search space of    10^9.
4-super06  has 10 days,  6 teams and   30 matches with a search space of   10^30.
4-super08  has 14 days,  8 teams and   56 matches with a search space of   10^64.
4-super10  has 18 days, 10 teams and   90 matches with a search space of  10^112.
4-super12  has 22 days, 12 teams and  132 matches with a search space of  10^177.
4-super14  has 26 days, 14 teams and  182 matches with a search space of  10^257.
5-galaxy04 has  6 days,  4 teams and   12 matches with a search space of    10^9.
5-galaxy06 has 10 days,  6 teams and   30 matches with a search space of   10^30.
5-galaxy08 has 14 days,  8 teams and   56 matches with a search space of   10^64.
5-galaxy10 has 18 days, 10 teams and   90 matches with a search space of  10^112.
5-galaxy12 has 22 days, 12 teams and  132 matches with a search space of  10^177.
5-galaxy14 has 26 days, 14 teams and  182 matches with a search space of  10^257.
5-galaxy16 has 30 days, 16 teams and  240 matches with a search space of  10^354.
5-galaxy18 has 34 days, 18 teams and  306 matches with a search space of  10^468.
5-galaxy20 has 38 days, 20 teams and  380 matches with a search space of  10^600.
5-galaxy22 has 42 days, 22 teams and  462 matches with a search space of  10^749.
5-galaxy24 has 46 days, 24 teams and  552 matches with a search space of  10^917.
5-galaxy26 has 50 days, 26 teams and  650 matches with a search space of 10^1104.
5-galaxy28 has 54 days, 28 teams and  756 matches with a search space of 10^1309.
5-galaxy30 has 58 days, 30 teams and  870 matches with a search space of 10^1534.
5-galaxy32 has 62 days, 32 teams and  992 matches with a search space of 10^1778.
5-galaxy34 has 66 days, 34 teams and 1122 matches with a search space of 10^2041.
5-galaxy36 has 70 days, 36 teams and 1260 matches with a search space of 10^2324.
5-galaxy38 has 74 days, 38 teams and 1406 matches with a search space of 10^2628.
5-galaxy40 has 78 days, 40 teams and 1560 matches with a search space of 10^2951.
sample01   has 3 resources,   2 machines, 288 periods and   25 tasks with a search space of    10^53.
sample02   has 3 resources,   2 machines, 288 periods and   50 tasks with a search space of   10^114.
sample03   has 3 resources,   2 machines, 288 periods and  100 tasks with a search space of   10^226.
sample04   has 3 resources,   5 machines, 288 periods and  100 tasks with a search space of   10^266.
sample05   has 3 resources,   2 machines, 288 periods and  250 tasks with a search space of   10^584.
sample06   has 3 resources,   5 machines, 288 periods and  250 tasks with a search space of   10^673.
sample07   has 3 resources,   2 machines, 288 periods and 1000 tasks with a search space of  10^2388.
sample08   has 3 resources,   5 machines, 288 periods and 1000 tasks with a search space of  10^2748.
sample09   has 4 resources,  20 machines, 288 periods and 2000 tasks with a search space of  10^6668.
instance00 has 1 resources,  10 machines, 288 periods and  200 tasks with a search space of   10^595.
instance01 has 1 resources,  10 machines, 288 periods and  200 tasks with a search space of   10^599.
instance02 has 1 resources,  10 machines, 288 periods and  200 tasks with a search space of   10^599.
instance03 has 1 resources,  10 machines, 288 periods and  200 tasks with a search space of   10^591.
instance04 has 1 resources,  10 machines, 288 periods and  200 tasks with a search space of   10^590.
instance05 has 2 resources,  25 machines, 288 periods and  200 tasks with a search space of   10^667.
instance06 has 2 resources,  25 machines, 288 periods and  200 tasks with a search space of   10^660.
instance07 has 2 resources,  25 machines, 288 periods and  200 tasks with a search space of   10^662.
instance08 has 2 resources,  25 machines, 288 periods and  200 tasks with a search space of   10^651.
instance09 has 2 resources,  25 machines, 288 periods and  200 tasks with a search space of   10^659.
instance10 has 2 resources,  20 machines, 288 periods and  500 tasks with a search space of  10^1657.
instance11 has 2 resources,  20 machines, 288 periods and  500 tasks with a search space of  10^1644.
instance12 has 2 resources,  20 machines, 288 periods and  500 tasks with a search space of  10^1637.
instance13 has 2 resources,  20 machines, 288 periods and  500 tasks with a search space of  10^1659.
instance14 has 2 resources,  20 machines, 288 periods and  500 tasks with a search space of  10^1643.
instance15 has 3 resources,  40 machines, 288 periods and  500 tasks with a search space of  10^1782.
instance16 has 3 resources,  40 machines, 288 periods and  500 tasks with a search space of  10^1778.
instance17 has 3 resources,  40 machines, 288 periods and  500 tasks with a search space of  10^1764.
instance18 has 3 resources,  40 machines, 288 periods and  500 tasks with a search space of  10^1769.
instance19 has 3 resources,  40 machines, 288 periods and  500 tasks with a search space of  10^1778.
instance20 has 3 resources,  50 machines, 288 periods and 1000 tasks with a search space of  10^3689.
instance21 has 3 resources,  50 machines, 288 periods and 1000 tasks with a search space of  10^3678.
instance22 has 3 resources,  50 machines, 288 periods and 1000 tasks with a search space of  10^3706.
instance23 has 3 resources,  50 machines, 288 periods and 1000 tasks with a search space of  10^3676.
instance24 has 3 resources,  50 machines, 288 periods and 1000 tasks with a search space of  10^3681.
instance25 has 3 resources,  60 machines, 288 periods and 1000 tasks with a search space of  10^3774.
instance26 has 3 resources,  60 machines, 288 periods and 1000 tasks with a search space of  10^3737.
instance27 has 3 resources,  60 machines, 288 periods and 1000 tasks with a search space of  10^3744.
instance28 has 3 resources,  60 machines, 288 periods and 1000 tasks with a search space of  10^3731.
instance29 has 3 resources,  60 machines, 288 periods and 1000 tasks with a search space of  10^3746.
instance30 has 4 resources,  70 machines, 288 periods and 2000 tasks with a search space of  10^7718.
instance31 has 4 resources,  70 machines, 288 periods and 2000 tasks with a search space of  10^7740.
instance32 has 4 resources,  70 machines, 288 periods and 2000 tasks with a search space of  10^7686.
instance33 has 4 resources,  70 machines, 288 periods and 2000 tasks with a search space of  10^7672.
instance34 has 4 resources,  70 machines, 288 periods and 2000 tasks with a search space of  10^7695.
instance35 has 4 resources,  80 machines, 288 periods and 2000 tasks with a search space of  10^7807.
instance36 has 4 resources,  80 machines, 288 periods and 2000 tasks with a search space of  10^7814.
instance37 has 4 resources,  80 machines, 288 periods and 2000 tasks with a search space of  10^7764.
instance38 has 4 resources,  80 machines, 288 periods and 2000 tasks with a search space of  10^7736.
instance39 has 4 resources,  80 machines, 288 periods and 2000 tasks with a search space of  10^7783.
instance40 has 4 resources,  90 machines, 288 periods and 4000 tasks with a search space of 10^15976.
instance41 has 4 resources,  90 machines, 288 periods and 4000 tasks with a search space of 10^15935.
instance42 has 4 resources,  90 machines, 288 periods and 4000 tasks with a search space of 10^15887.
instance43 has 4 resources,  90 machines, 288 periods and 4000 tasks with a search space of 10^15896.
instance44 has 4 resources,  90 machines, 288 periods and 4000 tasks with a search space of 10^15885.
instance45 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20173.
instance46 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20132.
instance47 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20126.
instance48 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20110.
instance49 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of 10^20078.

Build a Solver instance with the SolverFactory. Configure the SolverFactory with a solver configuration XML file, provided as a classpath resource (as definied by ClassLoader.getResource()):

       SolverFactory<NQueens> solverFactory = SolverFactory.createFromXmlResource(
               "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");
       Solver<NQueens> solver = solverFactory.buildSolver();

In a typical project (following the Maven directory structure), that solverConfig XML file would be located at $PROJECT_DIR/src/main/resources/org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml. Alternatively, a SolverFactory can be created from a File, an InputStream or a Reader with methods such as SolverFactory.createFromXmlFile(). However, for portability reasons, a classpath resource is recommended.

Note

On some environments (OSGi, JBoss modules, ...), classpath resources (such as the solver config, score DRL's and domain classes) in your jars might not be available to the default ClassLoader of the optaplanner-core jar. In those cases, provide the ClassLoader of your classes as a parameter:

       SolverFactory<NQueens> solverFactory = SolverFactory.createFromXmlResource(
               ".../nqueensSolverConfig.xml", getClass().getClassLoader());

Note

When using Workbench or Execution Server or to take advantage of Drools's KieContainer features, provide the KieContainer as a parameter:

       KieServices kieServices = KieServices.Factory.get();
       KieContainer kieContainer = kieServices.newKieContainer(
               kieServices.newReleaseId("org.nqueens", "nqueens", "1.0.0"));
       SolverFactory<NQueens> solverFactory = SolverFactory.createFromKieContainerXmlResource(
               kieContainer, ".../nqueensSolverConfig.xml");

And use a ksessionName in the solver configuration.

Both a Solver and a SolverFactory have a generic type called Solution_, which is the class representing a planning problem and solution.

A solver configuration XML file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<solver>
  <!-- Define the model -->
  <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</solutionClass>
  <entityClass>org.optaplanner.examples.nqueens.domain.Queen</entityClass>

  <!-- Define the score function -->
  <scoreDirectorFactory>
    <scoreDefinitionType>SIMPLE</scoreDefinitionType>
    <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
  </scoreDirectorFactory>

  <!-- Configure the optimization algorithms (optional) -->
  <termination>
    ...
  </termination>
  <constructionHeuristic>
    ...
  </constructionHeuristic>
  <localSearch>
    ...
  </localSearch>
</solver>

Notice the three parts in it:

  • Define the model.

  • Define the score function.

  • Optionally configure the optimization algorithm(s).

These various parts of a configuration are explained further in this manual.

Planner makes it relatively easy to switch optimization algorithm(s) just by changing the configuration. There is even a Benchmarker which allows you to play out different configurations against each other and report the most appropriate configuration for your use case.

A solver configuration can also be configured with the SolverConfig API. This is especially useful to change some values dynamically at runtime. For example, to change the running time based on user input, before building the Solver:

        SolverFactory<NQueens> solverFactory = SolverFactory.createFromXmlResource(
                "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");

        TerminationConfig terminationConfig = new TerminationConfig();
        terminationConfig.setMinutesSpentLimit(userInput);
        solverFactory.getSolverConfig().setTerminationConfig(terminationConfig);

        Solver<NQueens> solver = solverFactory.buildSolver();

Every element in the solver configuration XML is available as a *Config class or a property on a *Config class in the package namespace org.optaplanner.core.config. These *Config classes are the Java representation of the XML format. They build the runtime components (of the package namespace org.optaplanner.core.impl) and assemble them into an efficient Solver.

Look at a dataset of your planning problem. You will recognize domain classes in there, each of which can be categorized as one of the following:

Ask yourself: What class changes during planning? Which class has variables that I want the Solver to change for me? That class is a planning entity. Most use cases have only one planning entity class. Most use cases also have only one planning variable per planning entity class.

Note

In real-time planning, even though the problem itself changes, problem facts do not really change during planning, instead they change between planning (because the Solver temporarily stops to apply the problem fact changes).

A good model can greatly improve the success of your planning implementation. Follow these guidelines to design a good model:

  • In a many to one relationship, it is normally the many side that is the planning entity class. The property referencing the other side is then the planning variable. For example in employee rostering: the planning entity class is ShiftAssignment, not Employee, and the planning variable is ShiftAssignment.getEmployee() because one Employee has multiple ShiftAssignments but one ShiftAssignment has only one Employee.

  • A planning entity class should have at least one problem property. A planning entity class with only planning variables can normally be simplified by converting one of those planning variables into a problem property. That heavily decreases the search space size. For example in employee rostering: the ShiftAssignment's getShift() is a problem property and the getEmployee() is a planning variable. If both were a planning variable, solving it would be far less efficient.

    • A surrogate ID does not suffice as the required minimum of one problem property. It needs to be understandable by the business. A business key does suffice. This prevents an unassigned entity from being nameless (unidentifiable by the business).

    • This way, there is no need to add a hard constraint to assure that two planning entities are different: they are already different due to their problem properties.

    • In some cases, multiple planning entities have the same problem property. In such cases, it can be useful to create an extra problem property to distinguish them. For example in employee rostering: ShiftAssignment has besides the problem property Shift also the problem property indexInShift.

  • The number of planning entities is recommended to be fixed during planning. When unsure of which property should be a planning variable and which should be a problem property, choose it so the number of planning entities is fixed. For example in employee rostering: if the planning entity class would have been EmployeeAssignment with a problem property getEmployee() and a planning variable getShift(), than it is impossible to accurately predict how many EmployeeAssignment instances to make per Employee.

For inspiration, take a look at typical design patterns or how the examples modeled their domain:

Note

Vehicle routing is special, because it uses a chained planning variable.

In Planner, all problems facts and planning entities are plain old JavaBeans (POJOs). Load them from a database, an XML file, a data repository, a REST service, a noSQL cloud, ... (see integration): it doesn't matter.

A problem fact is any JavaBean (POJO) with getters that does not change during planning. Implementing the interface Serializable is recommended (but not required). For example in n queens, the columns and rows are problem facts:

public class Column implements Serializable {

    private int index;

    // ... getters
}
public class Row implements Serializable {

    private int index;

    // ... getters
}

A problem fact can reference other problem facts of course:

public class Course implements Serializable {

    private String code;

    private Teacher teacher; // Other problem fact
    private int lectureSize;
    private int minWorkingDaySize;

    private List<Curriculum> curriculumList; // Other problem facts
    private int studentSize;

    // ... getters
}

A problem fact class does not require any Planner specific code. For example, you can reuse your domain classes, which might have JPA annotations.

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that changes to another row. A planning problem has multiple planning entities, for example for a single n queens problem, each Queen is a planning entity. But there is usually only one planning entity class, for example the Queen class.

A planning entity class needs to be annotated with the @PlanningEntity annotation.

Each planning entity class has one or more planning variables. It should also have one or more defining properties. For example in n queens, a Queen is defined by its Column and has a planning variable Row. This means that a Queen's column never changes during solving, while its row does change.

@PlanningEntity
public class Queen {

    private Column column;

    // Planning variables: changes during planning, between score calculations.
    private Row row;

    // ... getters and setters
}

A planning entity class can have multiple planning variables. For example, a Lecture is defined by its Course and its index in that course (because one course has multiple lectures). Each Lecture needs to be scheduled into a Period and a Room so it has two planning variables (period and room). For example: the course Mathematics has eight lectures per week, of which the first lecture is Monday morning at 08:00 in room 212.

@PlanningEntity
public class Lecture {

    private Course course;
    private int lectureIndexInCourse;

    // Planning variables: changes during planning, between score calculations.
    private Period period;
    private Room room;

    // ...
}

Without automated scanning, the solver configuration also needs to declare each planning entity class:

<solver>
  ...
  <entityClass>org.optaplanner.examples.nqueens.domain.Queen</entityClass>
  ...
</solver>

Some uses cases have multiple planning entity classes. For example: route freight and trains into railway network arcs, where each freight can use multiple trains over its journey and each train can carry multiple freights per arc. Having multiple planning entity classes directly raises the implementation complexity of your use case.

Note

Do not create unnecessary planning entity classes. This leads to difficult Move implementations and slower score calculation.

For example, do not create a planning entity class to hold the total free time of a teacher, which needs to be kept up to date as the Lecture planning entities change. Instead, calculate the free time in the score constraints (or as a shadow variable) and put the result per teacher into a logically inserted score object.

If historic data needs to be considered too, then create problem fact to hold the total of the historic assignments up to, but not including, the planning window (so that it does not change when a planning entity changes) and let the score constraints take it into account.

Some optimization algorithms work more efficiently if they have an estimation of which planning entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in course scheduling lectures with more students are more difficult to schedule, and in n queens the middle queens are more difficult to fit on the board.

Therefore, you can set a difficultyComparatorClass to the @PlanningEntity annotation:

@PlanningEntity(difficultyComparatorClass = CloudProcessDifficultyComparator.class)
public class CloudProcess {
    // ...
}
public class CloudProcessDifficultyComparator implements Comparator<CloudProcess> {

    public int compare(CloudProcess a, CloudProcess b) {
        return new CompareToBuilder()
                .append(a.getRequiredMultiplicand(), b.getRequiredMultiplicand())
                .append(a.getId(), b.getId())
                .toComparison();
    }

}

Alternatively, you can also set a difficultyWeightFactoryClass to the @PlanningEntity annotation, so that you have access to the rest of the problem facts from the Solution too:

@PlanningEntity(difficultyWeightFactoryClass = QueenDifficultyWeightFactory.class)
public class Queen {
    // ...
}

See sorted selection for more information.

Important

Difficulty should be implemented ascending: easy entities are lower, difficult entities are higher. For example, in bin packing: small item < medium item < big item.

Although most algorithms start with the more difficult entities first, they just reverse the ordering.

None of the current planning variable states should be used to compare planning entity difficulty. During Construction Heuristics, those variables are likely to be null anyway. For example, a Queen's row variable should not be used.

Each planning entity has its own value range (a set of possible planning values) for the planning variable. For example, if a teacher can never teach in a room that does not belong to his department, lectures of that teacher can limit their room value range to the rooms of his department.

    @PlanningVariable(valueRangeProviderRefs = {"departmentRoomRange"})
    public Room getRoom() {
        return room;
    }

    @ValueRangeProvider(id = "departmentRoomRange")
    public List<Room> getPossibleRoomList() {
        return getCourse().getTeacher().getDepartment().getRoomList();
    }

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not have a feasible solution). For example: Unless there is no other way, a teacher can not teach in a room that does not belong to his department. In this case, the teacher should not be limited in his room value range (because sometimes there is no other way).

A planning entity should not use other planning entities to determinate its value range. That would only try to make the planning entity solve the planning problem itself and interfere with the optimization algorithms.

Every entity has its own List instance, unless multiple entities have the same value range. For example, if teacher A and B belong to the same department, they use the same List<Room> instance. Furthermore, each List contains a subset of the same set of planning value instances. For example, if department A and B can both use room X, then their List<Room> instances contain the same Room instance.

Some optimization algorithms work more efficiently if they have an estimation of which planning values are stronger, which means they are more likely to satisfy a planning entity. For example: in bin packing bigger containers are more likely to fit an item and in course scheduling bigger rooms are less likely to break the student capacity constraint.

Therefore, you can set a strengthComparatorClass to the @PlanningVariable annotation:

    @PlanningVariable(..., strengthComparatorClass = CloudComputerStrengthComparator.class)
    public CloudComputer getComputer() {
        // ...
    }
public class CloudComputerStrengthComparator implements Comparator<CloudComputer> {

    public int compare(CloudComputer a, CloudComputer b) {
        return new CompareToBuilder()
                .append(a.getMultiplicand(), b.getMultiplicand())
                .append(b.getCost(), a.getCost()) // Descending (but this is debatable)
                .append(a.getId(), b.getId())
                .toComparison();
    }

}

Alternatively, you can also set a strengthWeightFactoryClass to the @PlanningVariable annotation, so you have access to the rest of the problem facts from the solution too:

    @PlanningVariable(..., strengthWeightFactoryClass = RowStrengthWeightFactory.class)
    public Row getRow() {
        // ...
    }

See sorted selection for more information.

Important

Strength should be implemented ascending: weaker values are lower, stronger values are higher. For example in bin packing: small container < medium container < big container.

None of the current planning variable state in any of the planning entities should be used to compare planning values. During construction heuristics, those variables are likely to be null. For example, none of the row variables of any Queen may be used to determine the strength of a Row.

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning entities point to each other and form a chain. By modeling the problem as a set of chains (instead of a set of trees/loops), the search space is heavily reduced.

A planning variable that is chained either:

Here are some example of valid and invalid chains:

Every initialized planning entity is part of an open-ended chain that begins from an anchor. A valid model means that:

The optimization algorithms and built-in Moves do chain correction to guarantee that the model stays valid:

For example, in TSP the anchor is a Domicile (in vehicle routing it is Vehicle):

public class Domicile ... implements Standstill {

    ...

    public City getCity() {...}

}

The anchor (which is a problem fact) and the planning entity implement a common interface, for example TSP's Standstill:

public interface Standstill {

    City getCity();

}

That interface is the return type of the planning variable. Furthermore, the planning variable is chained. For example TSP's Visit (in vehicle routing it is Customer):

@PlanningEntity
public class Visit ... implements Standstill {

    ...

    public City getCity() {...}

    @PlanningVariable(graphType = PlanningVariableGraphType.CHAINED,
        valueRangeProviderRefs = {"domicileRange", "visitRange"})
    public Standstill getPreviousStandstill() {
        return previousStandstill;
    }

    public void setPreviousStandstill(Standstill previousStandstill) {
        this.previousStandstill = previousStandstill;
    }

}

Notice how two value range providers are usually combined:

Two variables are bi-directional if their instances always point to each other (unless one side points to null and the other side does not exist). So if A references B, then B references A.

For a non-chained planning variable, the bi-directional relationship must be a many to one relationship. To map a bi-directional relationship between two planning variables, annotate the master side (which is the genuine side) as a normal planning variable:

@PlanningEntity
public class CloudProcess {

    @PlanningVariable(...)
    public CloudComputer getComputer() {
        return computer;
    }
    public void setComputer(CloudComputer computer) {...}

}

And then annotate the other side (which is the shadow side) with a @InverseRelationShadowVariable annotation on a Collection (usually a Set or List) property:

@PlanningEntity
public class CloudComputer {

    @InverseRelationShadowVariable(sourceVariableName = "computer")
    public List<CloudProcess> getProcessList() {
        return processList;
    }

}

The sourceVariableName property is the name of the genuine planning variable on the return type of the getter (so the name of the genuine planning variable on the other side).

For a chained planning variable, the bi-directional relationship must be a one to one relationship. In that case, the genuine side looks like this:

@PlanningEntity
public class Customer ... {

    @PlanningVariable(graphType = PlanningVariableGraphType.CHAINED, ...)
    public Standstill getPreviousStandstill() {
        return previousStandstill;
    }
    public void setPreviousStandstill(Standstill previousStandstill) {...}

}

And the shadow side looks like this:

@PlanningEntity
public class Standstill {

    @InverseRelationShadowVariable(sourceVariableName = "previousStandstill")
    public Customer getNextCustomer() {
         return nextCustomer;
    }
    public void setNextCustomer(Customer nextCustomer) {...}

}

An anchor shadow variable is the anchor of a chained variable.

Annotate the anchor property as a @AnchorShadowVariable annotation:

@PlanningEntity
public class Customer {

    @AnchorShadowVariable(sourceVariableName = "previousStandstill")
    public Vehicle getVehicle() {...}
    public void setVehicle(Vehicle vehicle) {...}

}

The sourceVariableName property is the name of the chained variable on the same entity class.

To update a shadow variable, Planner uses a VariableListener. To define a custom shadow variable, write a custom VariableListener: implement the interface and annotate it on the shadow variable that needs to change.

    @PlanningVariable(...)
    public Standstill getPreviousStandstill() {
        return previousStandstill;
    }

    @CustomShadowVariable(variableListenerClass = VehicleUpdatingVariableListener.class,
            sources = {@CustomShadowVariable.Source(variableName = "previousStandstill")})
    public Vehicle getVehicle() {
        return vehicle;
    }

The variableName is the variable that triggers changes in the shadow variable(s).

For example, the VehicleUpdatingVariableListener assures that every Customer in a chain has the same Vehicle, namely the chain's anchor.

public class VehicleUpdatingVariableListener implements VariableListener<Customer> {

    public void afterEntityAdded(ScoreDirector scoreDirector, Customer customer) {
        updateVehicle(scoreDirector, customer);
    }

    public void afterVariableChanged(ScoreDirector scoreDirector, Customer customer) {
        updateVehicle(scoreDirector, customer);
    }

    ...

    protected void updateVehicle(ScoreDirector scoreDirector, Customer sourceCustomer) {
        Standstill previousStandstill = sourceCustomer.getPreviousStandstill();
        Vehicle vehicle = previousStandstill == null ? null : previousStandstill.getVehicle();
        Customer shadowCustomer = sourceCustomer;
        while (shadowCustomer != null && shadowCustomer.getVehicle() != vehicle) {
            scoreDirector.beforeVariableChanged(shadowCustomer, "vehicle");
            shadowCustomer.setVehicle(vehicle);
            scoreDirector.afterVariableChanged(shadowCustomer, "vehicle");
            shadowCustomer = shadowCustomer.getNextCustomer();
        }
    }

}

If one VariableListener changes two shadow variables (because having two separate VariableListeners would be inefficient), then annotate only the first shadow variable with the variableListenerClass and let the other shadow variable(s) reference the first shadow variable:

    @PlanningVariable(...)
    public Standstill getPreviousStandstill() {
        return previousStandstill;
    }

    @CustomShadowVariable(variableListenerClass = TransportTimeAndCapacityUpdatingVariableListener.class,
            sources = {@CustomShadowVariable.Source(variableName = "previousStandstill")})
    public Integer getTransportTime() {
        return transportTime;
    }

    @CustomShadowVariable(variableListenerRef = @PlanningVariableReference(variableName = "transportTime"))
    public Integer getCapacity() {
        return capacity;
    }

The method is only used if Drools is used for score calculation. Other score directors do not use it.

All objects returned by the getProblemFacts() method will be asserted into the Drools working memory, so the score rules can access them. For example, NQueens just returns all Column and Row instances.

    public Collection<? extends Object> getProblemFacts() {
        List<Object> facts = new ArrayList<Object>();
        facts.addAll(columnList);
        facts.addAll(rowList);
        // Do not add the planning entity's (queenList) because that will be done automatically
        return facts;
    }

All planning entities are automatically inserted into the Drools working memory. Do not add them in the method getProblemFacts().

The getProblemFacts() method is not called often: at most only once per solver phase per solver thread.

Most (if not all) optimization algorithms clone the solution each time they encounter a new best solution (so they can recall it later) or to work with multiple solutions in parallel.

A planning clone of a Solution must fulfill these requirements:

Implementing a planning clone method is hard, therefore you do not need to implement it.

If your Solution implements PlanningCloneable, Planner will automatically choose to clone it by calling the planningClone() method.

public interface PlanningCloneable<T> {

    T planningClone();

}

For example: If NQueens implements PlanningCloneable, it would only deep clone all Queen instances. When the original solution is changed during planning, by changing a Queen, the clone stays the same.

public class NQueens implements Solution<...>, PlanningCloneable<NQueens> {
    ...

    /**
     * Clone will only deep copy the {@link #queenList}.
     */
    public NQueens planningClone() {
        NQueens clone = new NQueens();
        clone.id = id;
        clone.n = n;
        clone.columnList = columnList;
        clone.rowList = rowList;
        List<Queen> clonedQueenList = new ArrayList<Queen>(queenList.size());
        for (Queen queen : queenList) {
            clonedQueenList.add(queen.planningClone());
        }
        clone.queenList = clonedQueenList;
        clone.score = score;
        return clone;
    }
}

The planningClone() method should only deep clone the planning entities. Notice that the problem facts, such as Column and Row are not normally cloned: even their List instances are not cloned. If you were to clone the problem facts too, then you would have to make sure that the new planning entity clones also refer to the new problem facts clones used by the solution. For example, if you were to clone all Row instances, then each Queen clone and the NQueens clone itself should refer to those new Row clones.

Warning

Cloning an entity with a chained variable is devious: a variable of an entity A might point to another entity B. If A is cloned, then its variable must point to the clone of B, not the original B.

Create a Solution instance to represent your planning problem's dataset, so it can be set on the Solver as the planning problem to solve. For example in n queens, an NQueens instance is created with the required Column and Row instances and every Queen set to a different column and every row set to null.

    private NQueens createNQueens(int n) {
        NQueens nQueens = new NQueens();
        nQueens.setId(0L);
        nQueens.setN(n);
        nQueens.setColumnList(createColumnList(nQueens));
        nQueens.setRowList(createRowList(nQueens));
        nQueens.setQueenList(createQueenList(nQueens));
        return nQueens;
    }

    private List<Queen> createQueenList(NQueens nQueens) {
        int n = nQueens.getN();
        List<Queen> queenList = new ArrayList<Queen>(n);
        long id = 0L;
        for (Column column : nQueens.getColumnList()) {
            Queen queen = new Queen();
            queen.setId(id);
            id++;
            queen.setColumn(column);
            // Notice that we leave the PlanningVariable properties on null
            queenList.add(queen);
        }
        return queenList;
    }

Usually, most of this data comes from your data layer, and your Solution implementation just aggregates that data and creates the uninitialized planning entity instances to plan:

        private void createLectureList(CourseSchedule schedule) {
            List<Course> courseList = schedule.getCourseList();
            List<Lecture> lectureList = new ArrayList<Lecture>(courseList.size());
            long id = 0L;
            for (Course course : courseList) {
                for (int i = 0; i < course.getLectureSize(); i++) {
                    Lecture lecture = new Lecture();
                    lecture.setId(id);
                    id++;
                    lecture.setCourse(course);
                    lecture.setLectureIndexInCourse(i);
                    // Notice that we leave the PlanningVariable properties (period and room) on null
                    lectureList.add(lecture);
                }
            }
            schedule.setLectureList(lectureList);
        }

Solving a problem is quite easy once you have:

Just provide the planning problem as argument to the solve() method and it will return the best solution found:

    NQueens bestSolution = solver.solve(planningProblem);

For example in n queens, the solve() method will return an NQueens instance with every Queen assigned to a Row.


The solve(Solution) method can take a long time (depending on the problem size and the solver configuration). The Solver intelligently wades through the search space of possible solutions and remembers the best solution it encounters during solving. Depending on a number factors (including problem size, how much time the Solver has, the solver configuration, ...), that best solution might or might not be an optimal solution.

Note

The Solution instance given to the method solve(Solution) is changed by the Solver, but do not mistake it for the best solution.

The Solution instance returned by the methods solve(Solution) or getBestSolution() is most likely a planning clone of the instance given to the method solve(Solution), which implies it is a different instance.

Note

The Solution instance given to the solve(Solution) method does not need to be uninitialized. It can be partially or fully initialized, which is often the case in repeated planning.

The environment mode allows you to detect common bugs in your implementation. It does not affect the logging level.

You can set the environment mode in the solver configuration XML file:

<solver>
  <environmentMode>FAST_ASSERT</environmentMode>
  ...
</solver>

A solver has a single Random instance. Some solver configurations use the Random instance a lot more than others. For example Simulated Annealing depends highly on random numbers, while Tabu Search only depends on it to deal with score ties. The environment mode influences the seed of that Random instance.

These are the environment modes:

The best way to illuminate the black box that is a Solver, is to play with the logging level:

For example, set it to debug logging, to see when the phases end and how fast steps are taken:

INFO  Solving started: time spent (3), best score (uninitialized/0), random (JDK with seed 0).
DEBUG     CH step (0), time spent (5), score (0), selected move count (1), picked move (Queen-2 {null -> Row-0}).
DEBUG     CH step (1), time spent (7), score (0), selected move count (3), picked move (Queen-1 {null -> Row-2}).
DEBUG     CH step (2), time spent (10), score (0), selected move count (4), picked move (Queen-3 {null -> Row-3}).
DEBUG     CH step (3), time spent (12), score (-1), selected move count (4), picked move (Queen-0 {null -> Row-1}).
INFO  Construction Heuristic phase (0) ended: step total (4), time spent (12), best score (-1).
DEBUG     LS step (0), time spent (19), score (-1),     best score (-1), accepted/selected move count (12/12), picked move (Queen-1 {Row-2 -> Row-3}).
DEBUG     LS step (1), time spent (24), score (0), new best score (0), accepted/selected move count (9/12), picked move (Queen-3 {Row-3 -> Row-2}).
INFO  Local Search phase (1) ended: step total (2), time spent (24), best score (0).
INFO  Solving ended: time spent (24), best score (0), average calculate count per second (1625).

All time spent values are in milliseconds.

Everything is logged to SLF4J, which is a simple logging facade which delegates every log message to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a dependency to the logging adaptor for your logging framework of choice.

If you are not using any logging framework yet, use Logback by adding this Maven dependency (there is no need to add an extra bridge dependency):

    <dependency>
      <groupId>ch.qos.logback</groupId>
      <artifactId>logback-classic</artifactId>
      <version>1.x</version>
    </dependency>

Configure the logging level on the org.optaplanner package in your logback.xml file:

<configuration>

  <logger name="org.optaplanner" level="debug"/>

  ...

<configuration>

If instead, you are still using Log4J 1.x (and you do not want to switch to its faster successor, Logback), add the bridge dependency:

    <dependency>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-log4j12</artifactId>
      <version>1.x</version>
    </dependency>

And configure the logging level on the package org.optaplanner in your log4j.xml file:

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

  <category name="org.optaplanner">
    <priority value="debug" />
  </category>

  ...

</log4j:configuration>

Note

In a multitenant application, multiple Solver instances might be running at the same time. To separate their logging into distinct files, surround the solve() call with an MDC:

        MDC.put("tenant.name",tenantName);
        Solution bestSolution = solver.solve(planningProblem);
        MDC.remove("tenant.name");

Then configure your logger to use different files for each ${tenant.name}. For example in Logback, use a SiftingAppender in logback.xml:

  <appender name="fileAppender" class="ch.qos.logback.classic.sift.SiftingAppender">
    <discriminator>
      <key>tenant.name</key>
      <defaultValue>unknown</defaultValue>
    </discriminator>
    <sift>
      <appender name="fileAppender.${tenant.name}" class="...FileAppender">
        <file>local/log/optaplanner-${tenant.name}.log</file>
        ...
      </appender>
    </sift>
  </appender>

Not all score constraints are equally important. If breaking one constraint is equally bad as breaking another constraint x times, then those two constraints have a different weight (but they are in the same score level). For example in vehicle routing, you can make one "unhappy driver" constraint match count as much as two "fuel tank usage" constraint matches:

Score weighting is often used in use cases where you can put a price tag on everything. In that case, the positive constraints maximize revenue and the negative constraints minimize expenses, so together they maximize profit. Alternatively, score weighting is also often used to create social fairness. For example, a nurse, who requests a free day, pays a higher weight on New Years eve than on a normal day.

Putting a good weight on a constraint can be a difficult analytical decision, because it is about making choices and tradeoffs with other constraints. However, a non-accurate weight is less damaging than mediocre algorithms:

The weight of a constraint match can be dynamically based on the planning entities involved. For example in cloud balance, the weight of the soft constraint match for an active Computer is the cost of that Computer (which differs per computer).

Note

Furthermore, it is often useful to allow the end-user to recalibrate constraint weights in the user interface, as demonstrated in the exam timetabling example with the InstitutionParametrization class.

Sometimes a score constraint outranks another score constraint, no matter how many times the other is broken. In that case, those score constraints are in different levels. For example, a nurse cannot do 2 shifts at the same time (due to the constraints of physical reality), this outranks all nurse happiness constraints.

Most use cases have only two score levels, hard and soft. Two scores are compared lexicographically. The first score level gets compared first. If those differ, the others score levels are ignored. For example, a score that breaks 0 hard constraints and 1000000 soft constraints is better than a score that breaks 1 hard constraint and 0 soft constraints.

If there are two (or more) score levels, for example a hard and soft level, then a score is feasible if no hard constraints are broken.

For each constraint, you need to pick a score level, a score weight and a score signum. For example: -1soft which has score level of soft, a weight of 1 and a negative signum. Do not use a big constraint weight when your business actually wants different score levels. That hack, known as score folding, is broken:

Note

Your business might tell you that your hard constraints all have the same weight, because they cannot be broken (so the weight does not matter). This is not true because if no feasible solution exists for a specific dataset, the least infeasible solution allows the business to estimate how many business resources they are lacking. For example in cloud balancing, how many new computers to buy.

Furthermore, it will likely create a score trap. For example in cloud balance if a Computer has seven CPU too little for its Processes, then it must be weighted seven times as much as if it had only one CPU too little.

Three or more score levels are supported. For example: a company might decide that profit outranks employee satisfaction (or visa versa), while both are outranked by the constraints of physical reality.

Note

To model fairness or load balancing, there is no need to use lots of score levels (even though Planner can handle many score levels).

Far less common is the use case of pareto optimization, which is also known under the more confusing term multi-objective optimization. In pareto scoring, score constraints are in the same score level, yet they are not weighted against each other. When two scores are compared, each of the score constraints are compared individually and the score with the most dominating score constraints wins. Pareto scoring can even be combined with score levels and score constraint weighting.

Consider this example with positive constraints, where we want to get the most apples and oranges. Since it is impossible to compare apples and oranges, we can not weight them against each other. Yet, despite that we can not compare them, we can state that two apples are better then one apple. Similarly, we can state that two apples and one orange are better than just one orange. So despite our inability to compare some Scores conclusively (at which point we declare them equal), we can find a set of optimal scores. Those are called pareto optimal.

Scores are considered equal far more often. It is left up to a human to choose the better out of a set of best solutions (with equal scores) found by Planner. In the example above, the user must choose between solution A (three apples and one orange) and solution B (one apple and six oranges). It is guaranteed that Planner has not found another solution which has more apples or more oranges or even a better combination of both (such as two apples and three oranges).

To implement pareto scoring in Planner, implement a custom ScoreDefinition and Score (and replace the BestSolutionRecaller). Future versions will provide out-of-the-box support.

Note

A pareto Score's compareTo method is not transitive because it does a pareto comparison. For example: having two apples is greater than one apple. One apple is equal to One orange. Yet, two apples are not greater than one orange (but actually equal). Pareto comparison violates the contract of the interface java.lang.Comparable's compareTo method, but Planners systems are pareto comparison safe, unless explicitly stated otherwise in this documentation.

Each Score implementation also has a ScoreDefinition implementation. For example: SimpleScore is defined by SimpleScoreDefinition.

An easy way to implement your score calculation in Java.

Just implement one method of the interface EasyScoreCalculator:

public interface EasyScoreCalculator<Sol extends Solution> {

    Score calculateScore(Sol solution);
   
}

For example in n queens:

public class NQueensEasyScoreCalculator implements EasyScoreCalculator<NQueens> {

    public SimpleScore calculateScore(NQueens nQueens) {
        int n = nQueens.getN();
        List<Queen> queenList = nQueens.getQueenList();
        
        int score = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                Queen leftQueen = queenList.get(i);
                Queen rightQueen = queenList.get(j);
                if (leftQueen.getRow() != null && rightQueen.getRow() != null) {
                    if (leftQueen.getRowIndex() == rightQueen.getRowIndex()) {
                        score--;
                    }
                    if (leftQueen.getAscendingDiagonalIndex() == rightQueen.getAscendingDiagonalIndex()) {
                        score--;
                    }
                    if (leftQueen.getDescendingDiagonalIndex() == rightQueen.getDescendingDiagonalIndex()) {
                        score--;
                    }
                }
            }
        }
        return SimpleScore.valueOf(score);
    }

}

Configure it in your solver configuration:

  <scoreDirectorFactory>
    <scoreDefinitionType>...</scoreDefinitionType>
    <easyScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensEasyScoreCalculator</easyScoreCalculatorClass>
  </scoreDirectorFactory>

Alternatively, build a EasyScoreCalculator instance at runtime and set it with the programmatic API:

    solverFactory.getSolverConfig().getScoreDirectorFactoryConfig.setEasyScoreCalculator(easyScoreCalculator);

A way to implement your score calculation incrementally in Java.

Implement all the methods of the interface IncrementalScoreCalculator and extend the class AbstractIncrementalScoreCalculator:

public interface IncrementalScoreCalculator<Sol extends Solution> {

    void resetWorkingSolution(Sol workingSolution);

    void beforeEntityAdded(Object entity);

    void afterEntityAdded(Object entity);

    void beforeVariableChanged(Object entity, String variableName);

    void afterVariableChanged(Object entity, String variableName);

    void beforeEntityRemoved(Object entity);

    void afterEntityRemoved(Object entity);

    Score calculateScore();
    
}

For example in n queens:

public class NQueensAdvancedIncrementalScoreCalculator extends AbstractIncrementalScoreCalculator<NQueens> {

    private Map<Integer, List<Queen>> rowIndexMap;
    private Map<Integer, List<Queen>> ascendingDiagonalIndexMap;
    private Map<Integer, List<Queen>> descendingDiagonalIndexMap;

    private int score;

    public void resetWorkingSolution(NQueens nQueens) {
        int n = nQueens.getN();
        rowIndexMap = new HashMap<Integer, List<Queen>>(n);
        ascendingDiagonalIndexMap = new HashMap<Integer, List<Queen>>(n * 2);
        descendingDiagonalIndexMap = new HashMap<Integer, List<Queen>>(n * 2);
        for (int i = 0; i < n; i++) {
            rowIndexMap.put(i, new ArrayList<Queen>(n));
            ascendingDiagonalIndexMap.put(i, new ArrayList<Queen>(n));
            descendingDiagonalIndexMap.put(i, new ArrayList<Queen>(n));
            if (i != 0) {
                ascendingDiagonalIndexMap.put(n - 1 + i, new ArrayList<Queen>(n));
                descendingDiagonalIndexMap.put((-i), new ArrayList<Queen>(n));
            }
        }
        score = 0;
        for (Queen queen : nQueens.getQueenList()) {
            insert(queen);
        }
    }

    public void beforeEntityAdded(Object entity) {
        // Do nothing
    }

    public void afterEntityAdded(Object entity) {
        insert((Queen) entity);
    }

    public void beforeVariableChanged(Object entity, String variableName) {
        retract((Queen) entity);
    }

    public void afterVariableChanged(Object entity, String variableName) {
        insert((Queen) entity);
    }

    public void beforeEntityRemoved(Object entity) {
        retract((Queen) entity);
    }

    public void afterEntityRemoved(Object entity) {
        // Do nothing
    }

    private void insert(Queen queen) {
        Row row = queen.getRow();
        if (row != null) {
            int rowIndex = queen.getRowIndex();
            List<Queen> rowIndexList = rowIndexMap.get(rowIndex);
            score -= rowIndexList.size();
            rowIndexList.add(queen);
            List<Queen> ascendingDiagonalIndexList = ascendingDiagonalIndexMap.get(queen.getAscendingDiagonalIndex());
            score -= ascendingDiagonalIndexList.size();
            ascendingDiagonalIndexList.add(queen);
            List<Queen> descendingDiagonalIndexList = descendingDiagonalIndexMap.get(queen.getDescendingDiagonalIndex());
            score -= descendingDiagonalIndexList.size();
            descendingDiagonalIndexList.add(queen);
        }
    }

    private void retract(Queen queen) {
        Row row = queen.getRow();
        if (row != null) {
            List<Queen> rowIndexList = rowIndexMap.get(queen.getRowIndex());
            rowIndexList.remove(queen);
            score += rowIndexList.size();
            List<Queen> ascendingDiagonalIndexList = ascendingDiagonalIndexMap.get(queen.getAscendingDiagonalIndex());
            ascendingDiagonalIndexList.remove(queen);
            score += ascendingDiagonalIndexList.size();
            List<Queen> descendingDiagonalIndexList = descendingDiagonalIndexMap.get(queen.getDescendingDiagonalIndex());
            descendingDiagonalIndexList.remove(queen);
            score += descendingDiagonalIndexList.size();
        }
    }

    public SimpleScore calculateScore() {
        return SimpleScore.valueOf(score);
    }

}

Configure it in your solver configuration:

  <scoreDirectorFactory>
    <scoreDefinitionType>...</scoreDefinitionType>
    <incrementalScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensAdvancedIncrementalScoreCalculator</incrementalScoreCalculatorClass>
  </scoreDirectorFactory>

Optionally, to explain a score with ScoreDirector.getConstraintMatchTotals() or to get better output when the IncrementalScoreCalculator is corrupted in FAST_ASSERT or FULL_ASSERT environmentMode, implement also the ConstraintMatchAwareIncrementalScoreCalculator interface:

public interface ConstraintMatchAwareIncrementalScoreCalculator<Sol extends Solution> {

    void resetWorkingSolution(Sol workingSolution, boolean constraintMatchEnabled);

    Collection<ConstraintMatchTotal> getConstraintMatchTotals();
    
}

There are several ways to define where your score rules live.

A ScoreHolder instance is asserted into the KieSession as a global called scoreHolder. The score rules need to (directly or indirectly) update that instance.

global SimpleScoreHolder scoreHolder;

rule "multipleQueensHorizontal"
    when
        Queen($id : id, row != null, $i : rowIndex)
        Queen(id > $id, rowIndex == $i)
    then
        scoreHolder.addConstraintMatch(kcontext, -1);
end

// multipleQueensVertical is obsolete because it is always 0

rule "multipleQueensAscendingDiagonal"
    when
        Queen($id : id, row != null, $i : ascendingDiagonalIndex)
        Queen(id > $id, ascendingDiagonalIndex == $i)
    then
        scoreHolder.addConstraintMatch(kcontext, -1);
end

rule "multipleQueensDescendingDiagonal"
    when
        Queen($id : id, row != null, $i : descendingDiagonalIndex)
        Queen(id > $id, descendingDiagonalIndex == $i)
    then
        scoreHolder.addConstraintMatch(kcontext, -1);
end

Most use cases also weigh their constraint types or even their matches differently, by using a specific weight for each constraint match. For example in course scheduling, assigning a Lecture to a Room that is lacking two seats is weighted equally bad as having one isolated Lecture in a Curriculum:

global HardSoftScoreHolder scoreHolder;

// RoomCapacity: For each lecture, the number of students that attend the course must be less or equal
// than the number of seats of all the rooms that host its lectures.
rule "roomCapacity"
    when
        $room : Room($capacity : capacity)
        $lecture : Lecture(room == $room, studentSize > $capacity, $studentSize : studentSize)
    then
        // Each student above the capacity counts as 1 point of penalty.
        scoreHolder.addSoftConstraintMatch(kcontext, ($capacity - $studentSize));
end

// CurriculumCompactness: Lectures belonging to a curriculum should be adjacent
// to each other (i.e., in consecutive periods).
// For a given curriculum we account for a violation every time there is one lecture not adjacent
// to any other lecture within the same day.
rule "curriculumCompactness"
    when
        ...
    then
        // Each isolated lecture in a curriculum counts as 2 points of penalty.
        scoreHolder.addSoftConstraintMatch(kcontext, -2);
end

The InitializingScoreTrend specifies how the Score will change as more and more variables are initialized (while the already initialized variables do not change). Some optimization algorithms (such Construction Heuristics and Exhaustive Search) run faster if they have such information.

For for the Score (or each score level separately), specify a trend:

  • ANY (default): Initializing an extra variable can change the score positively or negatively. Gives no performance gain.

  • ONLY_UP (rare): Initializing an extra variable can only change the score positively. Implies that:

    • There are only positive constraints

    • And initializing the next variable can not unmatch a positive constraint that was matched by a previous initialized variable.

  • ONLY_DOWN: Initializing an extra variable can only change the score negatively. Implies that:

    • There are only negative constraints

    • And initializing the next variable can not unmatch a negative constraint that was matched by a previous initialized variable.

Most use cases only have negative constraints. Many of those have an InitializingScoreTrend that only goes down:

  <scoreDirectorFactory>
    <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>
    <scoreDrl>.../cloudBalancingScoreRules.drl</scoreDrl>
    <initializingScoreTrend>ONLY_DOWN</initializingScoreTrend>
  </scoreDirectorFactory>

Alternatively, you can also specify the trend for each score level separately:

  <scoreDirectorFactory>
    <scoreDefinitionType>HARD_SOFT</scoreDefinitionType>
    <scoreDrl>.../cloudBalancingScoreRules.drl</scoreDrl>
    <initializingScoreTrend>ONLY_DOWN/ONLY_DOWN</initializingScoreTrend>
  </scoreDirectorFactory>

Put the environmentMode in FULL_ASSERT (or FAST_ASSERT) to detect corruption in the incremental score calculation. For more information, see the section about environmentMode. However, that will not verify that your score calculator implements your score constraints as your business actually desires.

A piece of incremental score calculator code can be difficult to write and to review. Assert its correctness by using a different implementation (for example a EasyScoreCalculator) to do the assertions triggered by the environmentMode. Just configure the different implementation as a assertionScoreDirectorFactory:

  <environmentMode>FAST_ASSERT</environmentMode>
  ...
  <scoreDirectorFactory>
    <scoreDefinitionType>...</scoreDefinitionType>
    <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
    <assertionScoreDirectorFactory>
      <easyScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensEasyScoreCalculator</easyScoreCalculatorClass>
    </assertionScoreDirectorFactory>
  </scoreDirectorFactory>

This way, the scoreDrl will be validated by the EasyScoreCalculator.

Instead of implementing a hard constraint, it can sometimes be built in. For example, If Lecture A should never be assigned to Room X, but it uses ValueRangeProvider on Solution, so the Solver will often try to assign it to Room X too (only to find out that it breaks a hard constraint). Use a ValueRangeProvider on the planning entity or filtered selection to define that Course A should only be assigned a Room different than X.

This can give a good performance gain in some use cases, not just because the score calculation is faster, but mainly because most optimization algorithms will spend less time evaluating unfeasible solutions. However, usually this not a good idea because there is a real risk of trading short term benefits for long term harm:

  • Many optimization algorithms rely on the freedom to break hard constraints when changing planning entities, to get out of local optima.

  • Both implementation approaches have limitations (feature compatibility, disabling automatic performance optimizations), as explained in their documentation.

Make sure that none of your score constraints cause a score trap. A trapped score constraint uses the same weight for different constraint matches, when it could just as easily use a different weight. It effectively lumps its constraint matches together, which creates a flatlined score function for that constraint. This can cause a solution state in which several moves need to be done to resolve or lower the weight of that single constraint. Some examples of score traps:

For example, consider this score trap. If the blue item moves from an overloaded computer to an empty computer, the hard score should improve. The trapped score implementation fails to do that:

The Solver should eventually get out of this trap, but it will take a lot of effort (especially if there are even more processes on the overloaded computer). Before they do that, they might actually start moving more processes into that overloaded computer, as there is no penalty for doing so.

There are several ways to deal with a score trap:

Not all score constraints have the same performance cost. Sometimes one score constraint can kill the score calculation performance outright. Use the Benchmarker to do a one minute run and check what happens to the average calculation count per second if you comment out all but one of the score constraints.

Some use cases have a business requirement to provide a fair schedule (usually as a soft score constraint), for example:

Implementing such a constraint can seem difficult (especially because there are different ways to formalize fairness), but usually the squared workload implementation behaves most desirable. For each employee/asset, count the workload w and subtract from the score.

As shown above, the squared workload implementation guarantees that if you select two employees from a given solution and make their distribution between those two employees fairer, then the resulting new solution will have a better overall score. Don not just use the difference from the average workload, as that can lead to unfairness, as demonstrated below.

Note

Instead of the squared workload, it is also possible to use the variance (squared difference to the average) or the standard deviation (square root of the variance). This has no effect on the score comparison, because the average will not change during planning. It is just more work to implement (because the average needs to be known) and trivially slower (because the calculation is a bit longer).

When the workload is perfect balanced, the user often likes to see a 0 score, instead of the distracting -34soft in the image above (for the last solution which is almost perfectly balanced). To nullify this, either add the average multiplied by the number of entities to the score or instead show the variance or standard deviation in the UI.

The number of possible solutions for a planning problem can be mind blowing. For example:

For comparison: the minimal number of atoms in the known universe (10^80). As a planning problem gets bigger, the search space tends to blow up really fast. Adding only 1 extra planning entity or planning value can heavily multiply the running time of some algorithms.

Calculating the number of possible solutions depends on the design of the domain model:

An algorithm that checks every possible solution (even with pruning such as in Branch And Bound) can easily run for billions of years on a single real-life planning problem. What we really want is to find the best solution in the limited time at our disposal. Planning competitions (such as the International Timetabling Competition) show that Local Search variations (Tabu Search, Simulated Annealing, Late Acceptance, ...) usually perform best for real-world problems given real-world time limitations.

The business wants the optimal solution, but they also have other requirements:

Given these requirements, and despite the promises of some salesmen, it's usually impossible for anyone or anything to find the optimal solution. Therefore, Planner focuses on finding the best solution in available time. In realistic, independent competitions, it often comes out as the best reusable software.

The nature of NP-complete problems make scaling a prime concern. The result quality of a small dataset guarantees nothing about the result quality of a large dataset. Scaling issues cannot be mitigated by hardware purchases later on. Start testing with a production sized dataset as soon as possible. Don't assess quality on small datasets (unless production encounters only such datasets). Instead, solve a production sized dataset and compare the results of longer executions, different algorithms and - if available - the human planner.

The best optimization algorithms configuration for your use case depends heavily on your use case. Nevertheless, this vanilla recipe will get you into the game with a pretty good configuration, probably much better than what you're used to.

Start with a quick configuration that involves little or no configuration and optimization code:

Next, implement planning entity difficulty comparison and turn it into:

Next, add Late Acceptance behind it:

  1. First Fit Decreasing

  2. Late Acceptance. A Late Acceptance size of 400 usually works well.

At this point the free lunch is over. The return on invested time lowers. The result is probably already more than good enough.

But you can do even better, at a lower return on invested time. Use the Benchmarker and try a couple of different Tabu Search, Simulated Annealing and Late Acceptance configurations, for example:

  1. First Fit Decreasing

  2. Tabu Search. An entity tabu size of 7 usually works well.

Use the Benchmarker to improve the values for those size parameters.

If it's worth your time, continue experimenting further. For example, try combining multiple algorithms together:

  1. First Fit Decreasing

  2. Late Acceptance (relatively long time)

  3. Tabu Search (relatively short time)

Many optimization algorithms have parameters which affect results and scalability. Planner applies configuration by exception, so all optimization algorithms have default parameter values. This is very similar to the Garbage Collection parameters in a JVM: most users have no need to tweak them, but power users do tweak them.

The default parameter values are good enough for many cases (and especially for prototypes), but if development time allows, it can be well worth to power tweak them with the benchmarker for better results and scalability on a specific use case. The documentation for each optimization algorithm also declares its advanced configuration for power tweaking.

Warning

The default value of parameters will change between minor versions, to improve them for most users (but not necessary for you). To shield yourself from these changes, for better or worse, always use the advanced configuration. This is not recommended.

A Solver can use multiple optimization algorithms in sequence. Each optimization algorithm is represented by a solver Phase. There is never more than 1 Phase solving at the same time.

Here's a configuration that runs 3 phases in sequence:

<solver>
  ...
  <constructionHeuristic>
    ... <!-- First phase: First Fit Decreasing -->
  </constructionHeuristic>
  <localSearch>
    ... <!-- Second phase: Late Acceptance -->
  </localSearch>
  <localSearch>
    ... <!-- Third phase: Tabu Search -->
  </localSearch>
</solver>

The solver phases are run in the order defined by solver configuration. When the first Phase terminates, the second Phase starts, and so on. When the last Phase terminates, the Solver terminates. Usually, a Solver will first run a construction heuristic and then run 1 or multiple metaheuristics:

If no phases are configured, Planner will default to a Construction Heuristic phase followed by a Local Search phase.

Some phases (especially construction heuristics) will terminate automatically. Other phases (especially metaheuristics) will only terminate if the Phase is configured to terminate:

<solver>
  ...
  <termination><!-- Solver termination -->
    <secondsSpentLimit>90</secondsSpentLimit>
  </termination>
  <localSearch>
    <termination><!-- Phase termination -->
      <secondsSpentLimit>60</secondsSpentLimit><!-- Give the next phase a chance to run too, before the Solver terminates -->
    </termination>
    ...
  </localSearch>
  <localSearch>
    ...
  </localSearch>
</solver>

If the Solver terminates (before the last Phase terminates itself), the current phase is terminated and all subsequent phases won't run.

Not all phases terminate automatically and sometimes you don't want to wait that long anyway. A Solver can be terminated synchronously by up-front configuration or asynchronously from another thread.

Especially metaheuristic phases will need to be told when to stop solving. This can be because of a number of reasons: the time is up, the perfect score has been reached, just before its solution is used, ... The only thing you can't depend on, is on finding the optimal solution (unless you know the optimal score), because a metaheuristic algorithm generally doesn't know it when it finds the optimal solution. For real-life problems this doesn't turn out to be much of a problem, because finding the optimal solution could take years, so you'll want to terminate sooner anyway. The only thing that matters is finding the best solution in the available time.

For synchronous termination, configure a Termination on a Solver or a Phase when it needs to stop. You can implement your own Termination, but the built-in implementations should suffice for most needs. Every Termination can calculate a time gradient (needed for some optimization algorithms), which is a ratio between the time already spent solving and the estimated entire solving time of the Solver or Phase.

Terminates when a certain score has been reached. Use this Termination if you know the perfect score, for example for 4 queens (which uses a SimpleScore):

  <termination>
    <bestScoreLimit>0</bestScoreLimit>
  </termination>

For a planning problem with a HardSoftScore, it could look like this:

  <termination>
    <bestScoreLimit>0hard/-5000soft</bestScoreLimit>
  </termination>

For a planning problem with a BendableScore with 3 hard levels and 1 soft level, it could look like this:

  <termination>
    <bestScoreLimit>0/0/0/-5000</bestScoreLimit>
  </termination>

To terminate once a feasible solution has been reached, this Termination isn't practical because it requires a bestScoreLimit such as 0hard/-2147483648soft. Instead, use the next termination.

Between phases or before the first phase, you might want to run a custom optmization algorithm to initialize the Solution or to take some low hanging fruit to get a better score quickly. Yet you'll still want to reuse the score calculation. For example, to implement a custom Construction Heuristic without implementing an entire Phase.

Note

Most of the time, a custom solver phase is not worth the hassle. The supported Constructions Heuristics are configurable (use the Benchmarker to tweak them), Termination aware and support partially initialized solutions too.

The CustomPhaseCommand interface looks like this:

public interface CustomPhaseCommand {

    void applyCustomProperties(Map<String, String> customPropertyMap);

    void changeWorkingSolution(ScoreDirector scoreDirector);

}

For example, extend AbstractCustomPhaseCommand and implement the changeWorkingSolution() method:

public class ToOriginalMachineSolutionInitializer extends AbstractCustomPhaseCommand {

    public void changeWorkingSolution(ScoreDirector scoreDirector) {
        MachineReassignment machineReassignment = (MachineReassignment) scoreDirector.getWorkingSolution();
        for (MrProcessAssignment processAssignment : machineReassignment.getProcessAssignmentList()) {
            scoreDirector.beforeVariableChanged(processAssignment, "machine");
            processAssignment.setMachine(processAssignment.getOriginalMachine());
            scoreDirector.afterVariableChanged(processAssignment, "machine");
            scoreDirector.triggerVariableListeners();
        }
    }

}

Warning

Any change on the planning entities in a CustomPhaseCommand must be notified to the ScoreDirector.

Warning

Do not change any of the problem facts in a CustomPhaseCommand. That will corrupt the Solver because any previous score or solution was for a different problem. To do that, read about repeated planning and do it with a ProblemFactChange instead.

Configure your CustomPhaseCommand like this:

<solver>
  ...
  <customPhase>
    <customPhaseCommandClass>org.optaplanner.examples.machinereassignment.solver.solution.initializer.ToOriginalMachineSolutionInitializer</customPhaseCommandClass>
  </customPhase>
  ... <!-- Other phases -->
</solver>

Configure multiple customPhaseCommandClass instances to run them in sequence.

Important

If the changes of a CustomPhaseCommand don't result in a better score, the best solution won't be changed (so effectively nothing will have changed for the next Phase or CustomPhaseCommand). To force such changes anyway, use forceUpdateBestSolution:

  <customPhase>
    <customPhaseCommandClass>...MyUninitializer</customPhaseCommandClass>
    <forceUpdateBestSolution>true</forceUpdateBestSolution>
  </customPhase>

Note

If the Solver or a Phase wants to terminate while a CustomPhaseCommand is still running, it will wait to terminate until the CustomPhaseCommand is done, however long that takes. The build-in solver phases don't suffer from this problem.

To configure values of your CustomPhaseCommand dynamically in the solver configuration (so you can tweak those parameters with the Benchmarker), use the customProperties element:

  <customPhase>
    <customProperties>
      <mySelectionSize>5</mySelectionSize>
    </customProperties>
  </customPhase>

Then override the applyCustomProperties() method to parse and apply them when a Solver is build.

public class MySolutionInitializer extends AbstractCustomPhaseCommand {

    private int mySelectionSize;

    public void applyCustomProperties(Map<String, String> customPropertyMap) {
        String mySelectionSizeString = customPropertyMap.get("mySelectionSize");
        if (mySelectionSizeString == null) {
            throw new IllegalArgumentException("A customProperty (mySelectionSize) is missing from the solver configuration.");
        }
        solverFactory = SolverFactory.createFromXmlResource(partitionSolverConfigResource);
        if (customPropertyMap.size() != 1) {
            throw new IllegalArgumentException("The customPropertyMap's size (" + customPropertyMap.size() + ") is not 1.");
        }
        mySelectionSize = Integer.parseInt(mySelectionSizeString);
    }

    ...
}

A Move is a change (or set of changes) from a solution A to a solution B. For example, the move below changes queen C from row 0 to row 2:

The new solution is called a neighbor of the original solution, because it can be reached in a single Move. Although a single move can change multiple queens, the neighbors of a solution should always be a very small subset of all possible solutions. For example, on that original solution, these are all possible changeMove's:

If we ignore the 4 changeMove's that have not impact and are therefore not doable, we can see that number of moves is n * (n - 1) = 12. This is far less than the number of possible solutions, which is n ^ n = 256. As the problem scales out, the number of possible moves increases far less than the number of possible solutions.

Yet, in 4 changeMove's or less we can reach any solution. For example we can reach a very different solution in 3 changeMove's:

All optimization algorithms use Move's to transition from one solution to a neighbor solution. Therefore, all the optimization algorithms are confronted with Move selection: the craft of creating and iterating moves efficiently and the art of finding the most promising subset of random moves to evaluate first.

For 1 planning variable, the ChangeMove selects 1 planning entity and 1 planning value and assigns the entity's variable to that value.

Simplest configuration:

    <changeMoveSelector/>

If there are multiple entity classes or multiple planning variables for 1 entity class, a simple configuration will automatically unfold into a union of ChangeMove selectors for every planning variable.

Advanced configuration:

    <changeMoveSelector>
      ... <!-- Normal selector properties -->
      <entitySelector>
        <entityClass>...Lecture</entityClass>
        ...
      </entitySelector>
      <valueSelector>
        <variableName>room</variableName>
        ...
        <nearbySelection>...</nearbySelection>
      </valueSelector>
    </changeMoveSelector>

A ChangeMove is the finest grained move.

Important

Almost every moveSelector configuration injected into a metaheuristic algorithm should include a changeMoveSelector or a custom implementation. This guarantees that every possible Solution can be reached through applying a number of moves in sequence (not taking score traps into account). Of course, normally it is unioned with other, more coarse grained move selectors.

The SwapMove selects 2 different planning entities and swaps the planning values of all their planning variables.

Although a SwapMove on a single variable is essentially just 2 ChangeMoves, it's often the winning step where the first of the 2 ChangeMoves would not be the winning step because it leaves the solution in a state with broken hard constraints. For example: swapping the room of 2 lectures doesn't bring the solution in a intermediate state where both lectures are in the same room which breaks a hard constraint.

Simplest configuration:

    <swapMoveSelector/>

If there are multiple entity classes, a simple configuration will automatically unfold into a union of SwapMove selectors for every entity class.

Advanced configuration:

    <swapMoveSelector>
      ... <!-- Normal selector properties -->
      <entitySelector>
        <entityClass>...Lecture</entityClass>
        ...
      </entitySelector>
      <secondaryEntitySelector>
        <entityClass>...Lecture</entityClass>
        ...
        <nearbySelection>...</nearbySelection>
      </secondaryEntitySelector>
      <variableNameInclude>room</variableNameInclude>
      <variableNameInclude>...</variableNameInclude>
    </swapMoveSelector>

The secondaryEntitySelector is rarely needed: if it is not specified, entities from the same entitySelector are swapped.

If one or more variableNameInclude properties are specified, not all planning variables will be swapped, but only those specified. For example for course scheduling, specifying only variableNameInclude room will make it only swap room, not period.

A pillar is a set of planning entities which have the same planning value(s) for their planning variable(s). The PillarChangeMove selects 1 entity pillar (or subset of those) and changes the value of 1 variable (which is the same for all entities) to another value.

In the example above, queen A and C have the same value (row 0) and are moved to row 2. Also the yellow and blue process have the same value (computer Y) and are moved to computer X.

Simplest configuration:

    <pillarChangeMoveSelector/>

Advanced configuration:

    <pillarSwapMoveSelector>
      ... <!-- Normal selector properties -->
      <pillarSelector>
        <entitySelector>
          <entityClass>...Lecture</entityClass>
          ...
        </entitySelector>
        <subPillarEnabled>true</subPillarEnabled>
        <minimumSubPillarSize>1</minimumSubPillarSize>
        <maximumSubPillarSize>1000</maximumSubPillarSize>
      </pillarSelector>
      <valueSelector>
        <variableName>room</variableName>
        ...
      </valueSelector>
    </pillarSwapMoveSelector>

A sub pillar is a subset of entities that share the same value(s) for their variable(s). For example if queen A, B, C and D are all located on row 0, they are a pillar and [A, D] is one of the many sub pillars. If subPillarEnabled (defaults to true) is false, no sub pillars are selected. If sub pillars are enabled, the pillar itself is also included and the properties minimumSubPillarSize (defaults to 1) and maximumSubPillarSize (defaults to infinity) limit the size of the selected (sub) pillar.

The other properties are explained in changeMoveSelector.

A tailChain is a set of planning entities with a chained planning variable which form a last part of a chain. The tailChainSwapMove selects a tail chain and swaps it with the tail chain of another planning value (in a different or the same anchor chain). If the targeted planning value, doesn't have a tail chain, it swaps with nothing (resulting in a change like move). If it occurs within the same anchor chain, a partial chain reverse occurs. In academic papers, this is often called a 2-opt move.

Simplest configuration:

    <tailChainSwapMoveSelector/>

Advanced configuration:

    <subChainChangeMoveSelector>
      ... <!-- Normal selector properties -->
      <entitySelector>
        <entityClass>...Customer</entityClass>
        ...
      </entitySelector>
      <valueSelector>
        <variableName>previousStandstill</variableName>
        ...
        <nearbySelection>...</nearbySelection>
      </valueSelector>
    </subChainChangeMoveSelector>

The entitySelector selects the start of the tail chain that is being moved. The valueSelector selects to where that tail chain is moved. If it has a tail chain itself, that is moved to the location of the original tail chain. It uses a valueSelector instead of a secondaryEntitySelector to be able to include all possible 2opt moves (such as moving to the end of a tail) and to work correctly with nearby selection (because of asymmetric distances and also swapped entity distance gives an incorrect selection probability).

Note

Although subChainChangeMoveSelector and subChainSwapMoveSelector include almost every possible tailChainSwapMove, experiments have shown that focusing on tailChainSwapMoves increases efficiency.

A subChain is a set of planning entities with a chained planning variable which form part of a chain. The subChainChangeMoveSelector selects a subChain and moves it to another place (in a different or the same anchor chain).

Simplest configuration:

    <subChainChangeMoveSelector/>

Advanced configuration:

    <subChainChangeMoveSelector>
      ... <!-- Normal selector properties -->
      <entityClass>...Customer</entityClass>
      <subChainSelector>
        <valueSelector>
          <variableName>previousStandstill</variableName>
          ...
        </valueSelector>
        <minimumSubChainSize>2</minimumSubChainSize>
        <maximumSubChainSize>40</maximumSubChainSize>
      </subChainSelector>
      <valueSelector>
        <variableName>previousStandstill</variableName>
        ...
      </valueSelector>
      <selectReversingMoveToo>true</selectReversingMoveToo>
    </subChainChangeMoveSelector>

The subChainSelector selects a number of entities, no less than minimumSubChainSize (defaults to 1) and no more than maximumSubChainSize (defaults to infinity).

The selectReversingMoveToo property (defaults to true) enables selecting the reverse of every subchain too.

A unionMoveSelector selects a Move by selecting 1 of its MoveSelector children to supply the next Move.

Simplest configuration:

    <unionMoveSelector>
      <...MoveSelector/>
      <...MoveSelector/>
      <...MoveSelector/>
      ...
    </unionMoveSelector>

Advanced configuration:

    <unionMoveSelector>
      ... <!-- Normal selector properties -->
      <selectorProbabilityWeightFactoryClass>...ProbabilityWeightFactory</selectorProbabilityWeightFactoryClass>
      <changeMoveSelector>
        <fixedProbabilityWeight>...</fixedProbabilityWeight>
        ...
      </changeMoveSelector>
      <swapMoveSelector>
        <fixedProbabilityWeight>...</fixedProbabilityWeight>
        ...
      </swapMoveSelector>
      <...MoveSelector>
        <fixedProbabilityWeight>...</fixedProbabilityWeight>
        ...
      </...MoveSelector>
      ...
    </unionMoveSelector>

The selectorProbabilityWeightFactory determines in selectionOrder RANDOM how often a MoveSelector child is selected to supply the next Move. By default, each MoveSelector child has the same chance of being selected.

Change the fixedProbabilityWeight of such a child to select it more often. For example, the unionMoveSelector can return a SwapMove twice as often as a ChangeMove:

    <unionMoveSelector>
      <changeMoveSelector>
        <fixedProbabilityWeight>1.0</fixedProbabilityWeight>
        ...
      </changeMoveSelector>
      <swapMoveSelector>
        <fixedProbabilityWeight>2.0</fixedProbabilityWeight>
        ...
      </swapMoveSelector>
    </unionMoveSelector>

The number of possible ChangeMoves is very different from the number of possible SwapMoves and furthermore it's problem dependent. To give each individual Move the same selection chance (as opposed to each MoveSelector), use the FairSelectorProbabilityWeightFactory:

    <unionMoveSelector>
      <selectorProbabilityWeightFactoryClass>org.optaplanner.core.impl.heuristic.selector.common.decorator.FairSelectorProbabilityWeightFactory</selectorProbabilityWeightFactoryClass>
      <changeMoveSelector/>
      <swapMoveSelector/>
    </unionMoveSelector>

A Selector's cacheType determines when a selection (such as a Move, an entity, a value, ...) is created and how long it lives.

Almost every Selector supports setting a cacheType:

    <changeMoveSelector>
      <cacheType>PHASE</cacheType>
      ...
    </changeMoveSelector>

The following cacheTypes are supported:

A cacheType can be set on composite selectors too:

    <unionMoveSelector>
      <cacheType>PHASE</cacheType>
      <changeMoveSelector/>
      <swapMoveSelector/>
      ...
    </unionMoveSelector>

Nested selectors of a cached selector cannot be configured to be cached themselves, unless it's a higher cacheType. For example: a STEP cached unionMoveSelector can hold a PHASE cached changeMoveSelector, but not a STEP cached changeMoveSelector.

A Selector's selectionOrder determines the order in which the selections (such as Moves, entities, values, ...) are iterated. An optimization algorithm will usually only iterate through a subset of its MoveSelector's selections, starting from the start, so the selectionOrder is critical to decide which Moves are actually evaluated.

Almost every Selector supports setting a selectionOrder:

    <changeMoveSelector>
      ...
      <selectionOrder>RANDOM</selectionOrder>
      ...
    </changeMoveSelector>

The following selectionOrders are supported:

A selectionOrder can be set on composite selectors too.

Note

When a Selector is cached, all of its nested Selectors will naturally default to selectionOrder ORIGINAL. Avoid overwriting the selectionOrder of those nested Selectors.

There can be certain moves that you don't want to select, because:

Filtered selection can happen on any Selector in the selector tree, including any MoveSelector, EntitySelector or ValueSelector. It works with any cacheType and selectionOrder.

Filtering uses the interface SelectionFilter:

public interface SelectionFilter<T> {

    boolean accept(ScoreDirector scoreDirector, T selection);

}

Implement the accept method to return false on a discarded selection. Unaccepted moves will not be selected and will therefore never have their doMove method called.

public class DifferentCourseSwapMoveFilter implements SelectionFilter<SwapMove> {

    public boolean accept(ScoreDirector scoreDirector, SwapMove move) {
        Lecture leftLecture = (Lecture) move.getLeftEntity();
        Lecture rightLecture = (Lecture) move.getRightEntity();
        return !leftLecture.getCourse().equals(rightLecture.getCourse());
    }

}

Apply the filter on the lowest level possible. In most cases, you'll need to know both the entity and the value involved and you'll have to apply a filterClass on the moveSelector:

    <swapMoveSelector>
      <filterClass>org.optaplanner.examples.curriculumcourse.solver.move.DifferentCourseSwapMoveFilter</filterClass>
    </swapMoveSelector>

But if possible, apply it on a lower levels, such as a filterClass on the entitySelector or valueSelector:

    <changeMoveSelector>
      <entitySelector>
        <filterClass>...EntityFilter</filterClass>
      </entitySelector>
    </changeMoveSelector>

You can configure multiple filterClass elements on a single selector.

Sorted selection can happen on any Selector in the selector tree, including any MoveSelector, EntitySelector or ValueSelector. It does not work with cacheType JUST_IN_TIME and it only works with selectionOrder SORTED.

It's mostly used in construction heuristics.

Some Selector types implement a SorterManner out of the box:

If you need the entire Solution to sort a Selector, use a SelectionSorterWeightFactory instead:

public interface SelectionSorterWeightFactory<Sol extends Solution, T> {

    Comparable createSorterWeight(Sol solution, T selection);

}
public class QueenDifficultyWeightFactory implements SelectionSorterWeightFactory<NQueens, Queen> {

    public Comparable createSorterWeight(NQueens nQueens, Queen queen) {
        int distanceFromMiddle = calculateDistanceFromMiddle(nQueens.getN(), queen.getColumnIndex());
        return new QueenDifficultyWeight(queen, distanceFromMiddle);
    }

    // ...

    public static class QueenDifficultyWeight implements Comparable<QueenDifficultyWeight> {

        private final Queen queen;
        private final int distanceFromMiddle;

        public QueenDifficultyWeight(Queen queen, int distanceFromMiddle) {
            this.queen = queen;
            this.distanceFromMiddle = distanceFromMiddle;
        }

        public int compareTo(QueenDifficultyWeight other) {
            return new CompareToBuilder()
                    // The more difficult queens have a lower distance to the middle
                    .append(other.distanceFromMiddle, distanceFromMiddle) // Decreasing
                    // Tie breaker
                    .append(queen.getColumnIndex(), other.queen.getColumnIndex())
                    .toComparison();
        }

    }

}

You 'll also need to configure it (unless it's annotated on the domain model and automatically applied by the optimization algorithm):

    <entitySelector>
      <cacheType>PHASE</cacheType>
      <selectionOrder>SORTED</selectionOrder>
      <sorterWeightFactoryClass>...QueenDifficultyWeightFactory</sorterWeightFactoryClass>
      <sorterOrder>DESCENDING</sorterOrder>
    </entitySelector>

Selecting all possible moves sometimes does not scale well enough, especially for construction heuristics (which don't support acceptedCountLimit).

To limit the number of selected selection per step, apply a selectedCountLimit on the selector:

    <changeMoveSelector>
      <selectedCountLimit>100</selectedCountLimit>
    </changeMoveSelector>

Note

To scale Local Search, setting acceptedCountLimit is usually better than using selectedCountLimit.

In some use cases (such as TSP and VRP, but also in non-chained variable cases), changing entities to nearby values or swapping nearby entities can heavily increase scalability and improve solution quality.

Nearby selection increases the probability of selecting an entity or value which is nearby to the first entity being moved in that move.

The distance between 2 entities or values is domain specific. Therefore, implement the NearbyDistanceMeter interface:

public interface NearbyDistanceMeter<O, D> {

    double getNearbyDistance(O origin, D destination);

}

It returns a double which represents the distance:

public class CustomerNearbyDistanceMeter implements NearbyDistanceMeter<Customer, Standstill> {

    public double getNearbyDistance(Customer origin, Standstill destination) {
        return origin.getDistanceTo(destination);
    }

}

To configure nearby selection, add a nearbySelection element in the entitySelector or valueSelector and use mimic selection to specify which entity should be near by the selection.

    <unionMoveSelector>
      <changeMoveSelector>
        <entitySelector id="entitySelector1"/>
        <valueSelector>
          <nearbySelection>
            <originEntitySelector mimicSelectorRef="entitySelector1"/>
            <nearbyDistanceMeterClass>...CustomerNearbyDistanceMeter</nearbyDistanceMeterClass>
            <parabolicDistributionSizeMaximum>40</parabolicDistributionSizeMaximum>
          </nearbySelection>
        </valueSelector>
      </changeMoveSelector>
      <swapMoveSelector>
        <entitySelector id="entitySelector2"/>
        <secondaryEntitySelector>
          <nearbySelection>
            <originEntitySelector mimicSelectorRef="entitySelector2"/>
            <nearbyDistanceMeterClass>...CustomerNearbyDistanceMeter</nearbyDistanceMeterClass>
            <parabolicDistributionSizeMaximum>40</parabolicDistributionSizeMaximum>
          </nearbySelection>
        </secondaryEntitySelector>
      </swapMoveSelector>
      <tailChainSwapMoveSelector>
        <entitySelector id="entitySelector3"/>
        <valueSelector>
          <nearbySelection>
            <originEntitySelector mimicSelectorRef="entitySelector3"/>
            <nearbyDistanceMeterClass>...CustomerNearbyDistanceMeter</nearbyDistanceMeterClass>
            <parabolicDistributionSizeMaximum>40</parabolicDistributionSizeMaximum>
          </nearbySelection>
        </valueSelector>
      </tailChainSwapMoveSelector>
    </unionMoveSelector>

A distributionSizeMaximum parameter should not be 1 because if the nearest is already the planning value of the current entity, then the only move that is selectable is not doable.

To allow every element to be selected, regardless of the number of entities, only set the distribution type (so without a distributionSizeMaximum parameter):

  <nearbySelection>
    <nearbySelectionDistributionType>PARABOLIC_DISTRIBUTION</nearbySelectionDistributionType>
  </nearbySelection>

The following NearbySelectionDistributionTypes are supported:

  • BLOCK_DISTRIBUTION: Only the n nearest are selected, with an equal probability. For example, select the 20 nearest:

      <nearbySelection>
        <blockDistributionSizeMaximum>20</blockDistributionSizeMaximum>
      </nearbySelection>
  • LINEAR_DISTRIBUTION: Nearest elements are selected with a higher probability. The probability decreases linearly.

      <nearbySelection>
        <linearDistributionSizeMaximum>40</linearDistributionSizeMaximum>
      </nearbySelection>
  • PARABOLIC_DISTRIBUTION (recommended): Nearest elements are selected with a higher probability.

      <nearbySelection>
        <parabolicDistributionSizeMaximum>80</parabolicDistributionSizeMaximum>
      </nearbySelection>
  • BETA_DISTRIBUTION: Selection according to a beta distribution. Slows down the solver significantly.

      <nearbySelection>
        <betaDistributionAlpha>1</betaDistributionAlpha>
        <betaDistributionBeta>5</betaDistributionBeta>
      </nearbySelection>

As always, use the Benchmarker to tweak values if desired.

To determine which move types might be missing in your implementation, run a Benchmarker for a short amount of time and configure it to write the best solutions to disk. Take a look at such a best solution: it will likely be a local optima. Try to figure out if there's a move that could get out of that local optima faster.

If you find one, implement that coarse-grained move, mix it with the existing moves and benchmark it against the previous configurations to see if you want to keep it.

Your custom moves must implement the Move interface:

public interface Move {

    boolean isMoveDoable(ScoreDirector scoreDirector);

    Move createUndoMove(ScoreDirector scoreDirector);
    void doMove(ScoreDirector scoreDirector);

    Collection<? extends Object> getPlanningEntities();
    Collection<? extends Object> getPlanningValues();

}

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class RowChangeMove extends AbstractMove {

    private Queen queen;
    private Row toRow;

    public RowChangeMove(Queen queen, Row toRow) {
        this.queen = queen;
        this.toRow = toRow;
    }

    // ... see below

}

An instance of RowChangeMove moves a queen from its current row to a different row.

Planner calls the doMove(ScoreDirector) method to do a move, which calls doMoveOnGenuineVariables(ScoreDirector). The Move implementation must notify the ScoreDirector of any changes it makes to planning entity's variables:

    public void doMoveOnGenuineVariables(ScoreDirector scoreDirector) {
        scoreDirector.beforeVariableChanged(queen, "row"); // before changes are made to the queen.row
        queen.setRow(toRow);
        scoreDirector.afterVariableChanged(queen, "row"); // after changes are made to the queen.row
    }

You need to call the scoreDirector.beforeVariableChanged(Object, String) and scoreDirector.afterVariableChanged(Object, String) methods directly before and after modifying the entity.

Planner automatically filters out non doable moves by calling the isMoveDoable(ScoreDirector) method on a move. A non doable move is:

In the n queens example, a move which moves the queen from its current row to the same row isn't doable:

    public boolean isMoveDoable(ScoreDirector scoreDirector) {
        return !ObjectUtils.equals(queen.getRow(), toRow);
    }

Because we won't generate a move which can move a queen outside the board limits, we don't need to check it. A move that is currently not doable could become doable on the working Solution of a later step.

Each move has an undo move: a move (normally of the same type) which does the exact opposite. In the example above the undo move of C0 to C2 would be the move C2 to C0. An undo move is created from a Move, before the Move has been done on the current solution.

    public Move createUndoMove(ScoreDirector scoreDirector) {
        return new RowChangeMove(queen, queen.getRow());
    }

Notice that if C0 would have already been moved to C2, the undo move would create the move C2 to C2, instead of the move C2 to C0.

A solver phase might do and undo the same Move more than once. In fact, many solver phases will iteratively do and undo a number of moves to evaluate them, before selecting one of those and doing that move again (without undoing it this time).

A Move must implement the getPlanningEntities() and getPlanningValues() methods. They are used by entity tabu and value tabu respectively. When they are called, the Move has already been done.

    public List<? extends Object> getPlanningEntities() {
        return Collections.singletonList(queen);
    }

    public Collection<? extends Object> getPlanningValues() {
        return Collections.singletonList(toRow);
    }

If your Move changes multiple planning entities, return all of them in getPlanningEntities() and return all their values (to which they are changing) in getPlanningValues().

    public Collection<? extends Object> getPlanningEntities() {
        return Arrays.asList(leftCloudProcess, rightCloudProcess);
    }

    public Collection<? extends Object> getPlanningValues() {
        return Arrays.asList(leftCloudProcess.getComputer(), rightCloudProcess.getComputer());
    }

A Move must implement the equals() and hashCode() methods. 2 moves which make the same change on a solution, should be equal.

    public boolean equals(Object o) {
        if (this == o) {
            return true;
        } else if (o instanceof RowChangeMove) {
            RowChangeMove other = (RowChangeMove) o;
            return new EqualsBuilder()
                    .append(queen, other.queen)
                    .append(toRow, other.toRow)
                    .isEquals();
        } else {
            return false;
        }
    }

    public int hashCode() {
        return new HashCodeBuilder()
                .append(queen)
                .append(toRow)
                .toHashCode();
    }

Notice that it checks if the other move is an instance of the same move type. This instanceof check is important because a move will be compared to a move with another move type if you're using more than 1 move type.

Implement the toString() method to keep Planner's logs readable:

    public String toString() {
        return queen + " {" + queen.getRow() + " -> " + toRow + "}";
    }

Now that we can implement a single custom Move, let's take a look at generating such custom moves.

Simplest configuration of Branch And Bound:

<solver>
  ...
  <exhaustiveSearch>
    <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
  </exhaustiveSearch>
</solver>

Important

For the pruning to work with the default ScoreBounder, the InitializingScoreTrend should be set. Especially an InitializingScoreTrend of ONLY_DOWN (or at least has ONLY_DOWN in the leading score levels) prunes a lot.

Advanced configuration:

  <exhaustiveSearch>
    <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
    <nodeExplorationType>DEPTH_FIRST</nodeExplorationType>
    <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
    <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
  </exhaustiveSearch>

The nodeExplorationType options are:

  • DEPTH_FIRST (default): Explore deeper nodes first (and then a better score and then a better optimistic bound). Deeper nodes (especially leaf nodes) often improve the pessimistic bound. A better pessimistic bound allows pruning more nodes to reduce the search space.

      <exhaustiveSearch>
        <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
        <nodeExplorationType>DEPTH_FIRST</nodeExplorationType>
      </exhaustiveSearch>
  • BREADTH_FIRST (not recommended): Explore nodes layer by layer (and then a better score and then a better optimistic bound). Scales terribly in memory (and usually in performance too).

      <exhaustiveSearch>
        <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
        <nodeExplorationType>BREADTH_FIRST</nodeExplorationType>
      </exhaustiveSearch>
  • SCORE_FIRST: Explore nodes with a better score first (and then a better optimistic bound and then deeper nodes first). Might scale as terribly as BREADTH_FIRST in some cases.

      <exhaustiveSearch>
        <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
        <nodeExplorationType>SCORE_FIRST</nodeExplorationType>
      </exhaustiveSearch>
  • OPTIMISTIC_BOUND_FIRST: Explore nodes with a better optimistic bound first (and then a better score and then deeper nodes first). Might scale as terribly as BREADTH_FIRST in some cases.

      <exhaustiveSearch>
        <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
        <nodeExplorationType>OPTIMISTIC_BOUND_FIRST</nodeExplorationType>
      </exhaustiveSearch>

The entitySorterManner options are:

  • DECREASING_DIFFICULTY: Initialize the more difficult planning entities first. This usually increases pruning (and therefore improves scalability). Requires the model to support planning entity difficulty comparison.

  • DECREASING_DIFFICULTY_IF_AVAILABLE (default): If the model supports planning entity difficulty comparison, behave like DECREASING_DIFFICULTY, else like NONE.

  • NONE: Initialize the planning entities in original order.

The valueSorterManner options are:

Exhaustive Search variants suffer from 2 big scalability issues:

As shown in these time spent graphs from the Benchmarker, Brute Force and Branch And Bound both hit a performance scalability wall. For example, on N queens it hits wall at a few dozen queens:

In most use cases, such as Cloud Balancing, the wall appears out of thin air:

Exhaustive Search hits this wall on small datasets already, so in production these optimizations algorithms are mostly useless. Use Construction Heuristics with Local Search instead: those can handle thousands of queens/computers easily.

Note

Throwing hardware at these scalability issues has no noticeable impact. Newer and more hardware are just a drop in the ocean. Moore's law cannot win against the onslaught of a few more planning entities in the dataset.

Configure this solver phase:

  <constructionHeuristic>
    <constructionHeuristicType>WEAKEST_FIT_DECREASING</constructionHeuristicType>
  </constructionHeuristic>

Note

If the InitializingScoreTrend is ONLY_DOWN, this algorithm is faster: for an entity, it picks the first move for which the score does not deteriorate the last step score, ignoring all subsequent moves.

For advanced configuration, see Allocate Entity From Queue.

Combines First Fit Decreasing and Strongest Fit. So it sorts the planning entities on decreasing difficulty and the planning values on decreasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength comparison.

Note

Do not presume that this algorithm has better results than First Fit Decreasing or Weakest Fit Decreasing. That's often not the case. However, it is usually better than Strongest Fit.

Configure this solver phase:

  <constructionHeuristic>
    <constructionHeuristicType>STRONGEST_FIT_DECREASING</constructionHeuristicType>
  </constructionHeuristic>

Note

If the InitializingScoreTrend is ONLY_DOWN, this algorithm is faster: for an entity, it picks the first move for which the score does not deteriorate the last step score, ignoring all subsequent moves.

For advanced configuration, see Allocate Entity From Queue.

Allocate Entity From Queue is a versatile, generic form of First Fit, First Fit Decreasing, Weakest Fit and Weakest Fit Decreasing. It works like this:

  1. Put all entities in a queue.

  2. Assign the first entity (from that queue) to the best value.

  3. Repeat until all entities are assigned.

Simple configuration:

  <constructionHeuristic>
    <constructionHeuristicType>ALLOCATE_ENTITY_FROM_QUEUE</constructionHeuristicType>
  </constructionHeuristic>

Verbose simple configuration:

  <constructionHeuristic>
    <constructionHeuristicType>ALLOCATE_ENTITY_FROM_QUEUE</constructionHeuristicType>
    <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
    <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
  </constructionHeuristic>

The entitySorterManner options are:

The valueSorterManner options are:

Advanced detailed configuration. For example, a Weakest Fit Decreasing configuration for a single entity class with a single variable:

  <constructionHeuristic>
    <queuedEntityPlacer>
      <entitySelector id="placerEntitySelector">
        <cacheType>PHASE</cacheType>
        <selectionOrder>SORTED</selectionOrder>
        <sorterManner>DECREASING_DIFFICULTY</sorterManner>
      </entitySelector>
      <changeMoveSelector>
        <entitySelector mimicSelectorRef="placerEntitySelector"/>
        <valueSelector>
          <cacheType>PHASE</cacheType>
          <selectionOrder>SORTED</selectionOrder>
          <sorterManner>INCREASING_STRENGTH</sorterManner>
        </valueSelector>
      </changeMoveSelector>
    </queuedEntityPlacer>
  </constructionHeuristic>

Per step, the QueuedEntityPlacer selects 1 uninitialized entity from the EntitySelector and applies the winning Move (out of all the moves for that entity generated by the MoveSelector). The mimic selection ensures that the winning Move changes (only) the selected entity.

To customize the entity or value sorting, see sorted selection. Other Selector customization (such as filtering and limiting) is supported too.

There are 2 ways to deal with multiple variables, depending on how their ChangeMoves are combined:

For example, presume a course scheduling example with 200 rooms and 40 periods.

This First Fit configuration for a single entity class with 2 variables, using a cartesian product of their ChangeMoves, will select 8000 moves per entity:

  <constructionHeuristic>
    <queuedEntityPlacer>
      <entitySelector id="placerEntitySelector">
        <cacheType>PHASE</cacheType>
      </entitySelector>
      <cartesianProductMoveSelector>
        <changeMoveSelector>
          <entitySelector mimicSelectorRef="placerEntitySelector"/>
          <valueSelector>
            <variableName>room</variableName>
          </valueSelector>
        </changeMoveSelector>
        <changeMoveSelector>
          <entitySelector mimicSelectorRef="placerEntitySelector"/>
          <valueSelector>
            <variableName>period</variableName>
          </valueSelector>
        </changeMoveSelector>
      </cartesianProductMoveSelector>
    </queuedEntityPlacer>
    ...
  </constructionHeuristic>

Warning

With 3 variables of 1000 values each, a cartesian product selects 1000000000 values per entity, which will take far too long.

This First Fit configuration for a single entity class with 2 variables, using sequential ChangeMoves, will select 240 moves per entity:

  <constructionHeuristic>
    <queuedEntityPlacer>
      <entitySelector id="placerEntitySelector">
        <cacheType>PHASE</cacheType>
      </entitySelector>
      <changeMoveSelector>
        <entitySelector mimicSelectorRef="placerEntitySelector"/>
        <valueSelector>
          <variableName>period</variableName>
        </valueSelector>
      </changeMoveSelector>
      <changeMoveSelector>
        <entitySelector mimicSelectorRef="placerEntitySelector"/>
        <valueSelector>
          <variableName>room</variableName>
        </valueSelector>
      </changeMoveSelector>
    </queuedEntityPlacer>
    ...
  </constructionHeuristic>

Important

Especially for sequential ChangeMoves, the order of the variables is important. In the example above, it's better to select the period first (instead of the other way around), because there are more hard constraints that do not involve the room (for example: no teacher should teach 2 lectures at the same time). Let the Benchmarker guide you.

With 3 or more variables, it's possible to combine the cartesian product and sequential techniques:

  <constructionHeuristic>
    <queuedEntityPlacer>
      ...
      <cartesianProductMoveSelector>
        <changeMoveSelector>...</changeMoveSelector>
        <changeMoveSelector>...</changeMoveSelector>
      </cartesianProductMoveSelector>
      <changeMoveSelector>...</changeMoveSelector>
    </queuedEntityPlacer>
    ...
  </constructionHeuristic>

There are several pick early types for Construction Heuristics:

  • NEVER: Evaluate all the selected moves to initialize the variable(s). This is the default if the InitializingScoreTrend is not ONLY_DOWN.

      <constructionHeuristic>
        ...
        <forager>
          <pickEarlyType>NEVER</pickEarlyType>
        </forager>
      </constructionHeuristic>
  • FIRST_NON_DETERIORATING_SCORE: Initialize the variable(s) with the first move that doesn't deteriorate the score, ignore the remaining selected moves. This is the default if the InitializingScoreTrend is ONLY_DOWN.

      <constructionHeuristic>
        ...
        <forager>
          <pickEarlyType>FIRST_NON_DETERIORATING_SCORE</pickEarlyType>
        </forager>
      </constructionHeuristic>

    Note

    If there are only negative constraints, but the InitializingScoreTrend is strictly not ONLY_DOWN, it can sometimes make sense to apply FIRST_NON_DETERIORATING_SCORE. Use the Benchmarker to decide if the score quality loss is worth the time gain.

  • FIRST_FEASIBLE_SCORE: Initialize the variable(s) with the first move that has a feasible score.

      <constructionHeuristic>
        ...
        <forager>
          <pickEarlyType>FIRST_FEASIBLE_SCORE</pickEarlyType>
        </forager>
      </constructionHeuristic>

    If the InitializingScoreTrend is ONLY_DOWN, use FIRST_FEASIBLE_SCORE_OR_NON_DETERIORATING_HARD instead, because that's faster without any disadvantages.

  • FIRST_FEASIBLE_SCORE_OR_NON_DETERIORATING_HARD: Initialize the variable(s) with the first move that doesn't deteriorate the feasibility of the score any further.

      <constructionHeuristic>
        ...
        <forager>
          <pickEarlyType>FIRST_FEASIBLE_SCORE_OR_NON_DETERIORATING_HARD</pickEarlyType>
        </forager>
      </constructionHeuristic>

Allocate From Pool is a versatile, generic form of Cheapest Insertion and Regret Insertion. It works like this:

  1. Put all entity-value combinations in a pool.

  2. Assign the best entity to best value.

  3. Repeat until all entities are assigned.

Simple configuration:

  <constructionHeuristic>
    <constructionHeuristicType>ALLOCATE_FROM_POOL</constructionHeuristicType>
  </constructionHeuristic>

Verbose simple configuration:

  <constructionHeuristic>
    <constructionHeuristicType>ALLOCATE_FROM_POOL</constructionHeuristicType>
    <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
    <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
  </constructionHeuristic>

The entitySorterManner and valueSorterManner options are described in Allocate Entity From Queue.

Advanced detailed configuration. For example, a Cheapest Insertion configuration for a single entity class with a single variable:

  <constructionHeuristic>
    <pooledEntityPlacer>
      <changeMoveSelector>
        <entitySelector id="placerEntitySelector">
          <cacheType>PHASE</cacheType>
          <selectionOrder>SORTED</selectionOrder>
          <sorterManner>DECREASING_DIFFICULTY</sorterManner>
        </entitySelector>
        <valueSelector>
          <cacheType>PHASE</cacheType>
          <selectionOrder>SORTED</selectionOrder>
          <sorterManner>INCREASING_STRENGTH</sorterManner>
        </valueSelector>
      </changeMoveSelector>
    </pooledEntityPlacer>
  </constructionHeuristic>

Per step, the PooledEntityPlacer applies the winning Move (out of all the moves for that entity generated by the MoveSelector).

To customize the entity or value sorting, see sorted selection. Other Selector customization (such as filtering and limiting) is supported too.

A step is the winning Move. Local Search tries a number of moves on the current solution and picks the best accepted move as the step:


Because the move B0 to B3 has the highest score (-3), it is picked as the next step. If multiple moves have the same highest score, one is picked randomly, in this case B0 to B3. Note that C0 to C3 (not shown) could also have been picked because it also has the score -3.

The step is applied on the solution. From that new solution, Local Search tries every move again, to decide the next step after that. It continually does this in a loop, and we get something like this:


Notice that Local Search doesn't use a search tree, but a search path. The search path is highlighted by the green arrows. At each step it tries all selected moves, but unless it's the step, it doesn't investigate that solution further. This is one of the reasons why Local Search is very scalable.

As shown above, Local Search solves the 4 queens problem by starting with the starting solution and make the following steps sequentially:

  1. B0 to B3

  2. D0 to B2

  3. A0 to B1

Turn on debug logging for the category org.optaplanner to show those steps in the log:

INFO  Solving started: time spent (0), best score (-6), random (JDK with seed 0).
DEBUG     LS step (0), time spent (20), score (-3), new best score (-3), accepted/selected move count (12/12), picked move (Queen-1 {Row-0 -> Row-3}).
DEBUG     LS step (1), time spent (31), score (-1), new best score (-1), accepted/selected move count (12/12), picked move (Queen-3 {Row-0 -> Row-2}).
DEBUG     LS step (2), time spent (40), score (0), new best score (0), accepted/selected move count (12/12), picked move (Queen-0 {Row-0 -> Row-1}).
INFO  Local Search phase (0) ended: step total (3), time spent (41), best score (0).
INFO  Solving ended: time spent (41), best score (0), average calculate count per second (1780).

Notice that a log message includes the toString() method of the Move implementation which returns for example "Queen-1 {Row-0 -> Row-3}".

A naive Local Search configuration solves the 4 queens problem in 3 steps, by evaluating only 37 possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of 18446744073709551616 possible solutions. By using a Construction Heuristics phase first, it's even a lot more efficient.

Local Search decides the next step with the aid of 3 configurable components:

The solver phase configuration looks like this:

  <localSearch>
    <unionMoveSelector>
      ...
    </unionMoveSelector>
    <acceptor>
      ...
    </acceptor>
    <forager>
      ...
    </forager>
  </localSearch>

In the example below, the MoveSelector generated the moves shown with the blue lines, the Acceptor accepted all of them and the Forager picked the move B0 to B3.

Turn on trace logging to show the decision making in the log:

INFO  Solver started: time spent (0), score (-6), new best score (-6), random (JDK with seed 0).
TRACE         Move index (0) not doable, ignoring move (Queen-0 {Row-0 -> Row-0}).
TRACE         Move index (1), score (-4), accepted (true), move (Queen-0 {Row-0 -> Row-1}).
TRACE         Move index (2), score (-4), accepted (true), move (Queen-0 {Row-0 -> Row-2}).
TRACE         Move index (3), score (-4), accepted (true), move (Queen-0 {Row-0 -> Row-3}).
...
TRACE         Move index (6), score (-3), accepted (true), move (Queen-1 {Row-0 -> Row-3}).
...
TRACE         Move index (9), score (-3), accepted (true), move (Queen-2 {Row-0 -> Row-3}).
...
TRACE         Move index (12), score (-4), accepted (true), move (Queen-3 {Row-0 -> Row-3}).
DEBUG     LS step (0), time spent (6), score (-3), new best score (-3), accepted/selected move count (12/12), picked move (Queen-1 {Row-0 -> Row-3}).
...

Because the last solution can degrade (for example in Tabu Search), the Solver remembers the best solution it has encountered through the entire search path. Each time the current solution is better than the last best solution, the current solution is cloned and referenced as the new best solution.

A Forager gathers all accepted moves and picks the move which is the next step. Normally it picks the accepted move with the highest score. If several accepted moves have the highest score, one is picked randomly to break the tie. Breaking ties randomly leads to better results.

Simplest configuration:

  <localSearch>
    <localSearchType>TABU_SEARCH</localSearchType>
  </localSearch>

When Tabu Search takes steps it creates one or more tabu's. For a number of steps, it does not accept a move if that move breaks tabu. That number of steps is the tabu size. Advanced configuration:

  <localSearch>
    ...
    <acceptor>
      <entityTabuSize>7</entityTabuSize>
    </acceptor>
    <forager>
      <acceptedCountLimit>1000</acceptedCountLimit>
    </forager>
  </localSearch>

Planner implements several tabu types:

Sometimes it's useful to combine tabu types:

    <acceptor>
      <entityTabuSize>7</entityTabuSize>
      <valueTabuSize>3</valueTabuSize>
    </acceptor>

If the tabu size is too small, the solver can still get stuck in a local optimum. On the other hand, if the tabu size is too large, the solver can be inefficient by bouncing of the walls. Use the Benchmarker to fine tweak your configuration.

Start with a simulatedAnnealingStartingTemperature set to the maximum score delta a single move can cause. Use the Benchmarker to tweak the value. Advanced configuration:

  <localSearch>
    ...
    <acceptor>
      <simulatedAnnealingStartingTemperature>2hard/100soft</simulatedAnnealingStartingTemperature>
    </acceptor>
    <forager>
      <acceptedCountLimit>1</acceptedCountLimit>
    </forager>
  </localSearch>

Simulated Annealing should use a low acceptedCountLimit. The classic algorithm uses an acceptedCountLimit of 1, but often 4 performs better.

Simulated Annealing can be combined with a tabu acceptor at the same time. That gives Simulated Annealing salted with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search configuration.

  <localSearch>
    ...
    <acceptor>
      <simulatedAnnealingStartingTemperature>2hard/100soft</simulatedAnnealingStartingTemperature>
      <entityTabuSize>5</entityTabuSize>
    </acceptor>
    <forager>
      <acceptedCountLimit>1</acceptedCountLimit>
    </forager>
  </localSearch>

This algorithm has not been implemented yet.

Note

A good Genetic Algorithms prototype in Planner was written some time ago, but it wasn't practical to merge and support it at the time. The results of Genetic Algorithms were consistently and seriously inferior to all the Local Search variants (except Hill Climbing) on all use cases tried. Nevertheless, a future version of Planner will add support for Genetic Algorithms, so you can easily benchmark Genetic Algorithms on your use case too.

14.1. Find The Best Solver Configuration
14.2. Benchmark Configuration
14.2.1. Add Dependency On optaplanner-benchmark
14.2.2. Build And Run A PlannerBenchmark
14.2.3. SolutionFileIO: Input And Output Of Solution Files
14.2.4. Warming Up The HotSpot Compiler
14.2.5. Benchmark Blueprint: A Predefined Configuration
14.2.6. Write The Output Solution Of Benchmark Runs
14.2.7. Benchmark Logging
14.3. Benchmark Report
14.3.1. HTML Report
14.3.2. Ranking The Solvers
14.4. Summary Statistics
14.4.1. Best Score Summary (Graph And Table)
14.4.2. Best Score Scalability Summary (Graph)
14.4.3. Best Score Distribution Summary (Graph)
14.4.4. Winning Score Difference Summary (Graph And Table)
14.4.5. Worst Score Difference Percentage (ROI) Summary (Graph and Table)
14.4.6. Average Calculation Count Summary (Graph and Table)
14.4.7. Time Spent Summary (Graph And Table)
14.4.8. Time Spent Scalability Summary (Graph)
14.4.9. Best Score Per Time Spent Summary (Graph)
14.5. Statistic Per Dataset (Graph And CSV)
14.5.1. Enable A Problem Statistic
14.5.2. Best Score Over Time Statistic (Graph And CSV)
14.5.3. Step Score Over Time Statistic (Graph And CSV)
14.5.4. Calculate Count Per Second Statistic (Graph And CSV)
14.5.5. Best Solution Mutation Over Time Statistic (Graph And CSV)
14.5.6. Move Count Per Step Statistic (Graph And CSV)
14.5.7. Memory Use Statistic (Graph And CSV)
14.6. Statistic Per Single Benchmark (Graph And CSV)
14.6.1. Enable A Single Statistic
14.6.2. Constraint Match Total Best Score Over Time Statistic (Graph And CSV)
14.6.3. Constraint Match Total Step Score Over Time Statistic (Graph And CSV)
14.6.4. Picked Move Type Best Score Diff Over Time Statistic (Graph And CSV)
14.6.5. Picked Move Type Step Score Diff Over Time Statistic (Graph And CSV)
14.7. Advanced Benchmarking
14.7.1. Benchmarking Performance Tricks
14.7.2. Statistical Benchmarking
14.7.3. Template Based Benchmarking And Matrix Benchmarking
14.7.4. Benchmark Report Aggregation

Build a PlannerBenchmark instance with a PlannerBenchmarkFactory. Configure it with a benchmark configuration XML file, provided as a classpath resource:

        PlannerBenchmarkFactory plannerBenchmarkFactory = PlannerBenchmarkFactory.createFromXmlResource(
                "org/optaplanner/examples/nqueens/benchmark/nqueensBenchmarkConfig.xml");
        PlannerBenchmark plannerBenchmark = plannerBenchmarkFactory.buildPlannerBenchmark();
        plannerBenchmark.benchmark();

A benchmark configuration file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
  <benchmarkDirectory>local/data/nqueens</benchmarkDirectory>

  <inheritedSolverBenchmark>
    <problemBenchmarks>
      ...
      <inputSolutionFile>data/nqueens/unsolved/32queens.xml</inputSolutionFile>
      <inputSolutionFile>data/nqueens/unsolved/64queens.xml</inputSolutionFile>
    </problemBenchmarks>
    <solver>
      ...<!-- Common solver configuration -->
    </solver>
  </inheritedSolverBenchmark>

  <solverBenchmark>
    <name>Tabu Search</name>
    <solver>
      ...<!-- Tabu Search specific solver configuration -->
    </solver>
  </solverBenchmark>
  <solverBenchmark>
    <name>Simulated Annealing</name>
    <solver>
      ...<!-- Simulated Annealing specific solver configuration -->
    </solver>
  </solverBenchmark>
  <solverBenchmark>
    <name>Late Acceptance</name>
    <solver>
      ...<!-- Late Acceptance specific solver configuration -->
    </solver>
  </solverBenchmark>
</plannerBenchmark>

This PlannerBenchmark will try 3 configurations (Tabu Search, Simulated Annealing and Late Acceptance) on 2 data sets (32queens and 64queens), so it will run 6 solvers.

Every <solverBenchmark> element contains a solver configuration and one or more <inputSolutionFile> elements. It will run the solver configuration on each of those unsolved solution files. The element name is optional, because it is generated if absent. The inputSolutionFile is read by a SolutionFileIO (relative to the working directory).

Note

Use a forward slash (/) as the file separator (for example in the element <inputSolutionFile>). That will work on any platform (including Windows).

Do not use backslash (\) as the file separator: that breaks portability because it does not work on Linux and Mac.

The benchmark report will be written in the directory specified the <benchmarkDirectory> element (relative to the working directory).

Note

It's recommended that the benchmarkDirectory is a directory ignored for source control and not cleaned by your build system. This way the generated files are not bloating your source control and they aren't lost when doing a build. Usually that directory is called local.

If an Exception or Error occurs in a single benchmark, the entire Benchmarker will not fail-fast (unlike everything else in Planner). Instead, the Benchmarker will continue to run all other benchmarks, write the benchmark report and then fail (if there is at least 1 failing single benchmark). The failing benchmarks will be clearly marked as such in the benchmark report.

To quickly configure and run a benchmark for typical solver configs, use a solverBenchmarkBluePrint instead of solverBenchmarks:

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
  <benchmarkDirectory>local/data/nqueens</benchmarkDirectory>
  <warmUpSecondsSpentLimit>30</warmUpSecondsSpentLimit>

  <inheritedSolverBenchmark>
    <problemBenchmarks>
      <xStreamAnnotatedClass>org.optaplanner.examples.nqueens.domain.NQueens</xStreamAnnotatedClass>
      <inputSolutionFile>data/nqueens/unsolved/32queens.xml</inputSolutionFile>
      <inputSolutionFile>data/nqueens/unsolved/64queens.xml</inputSolutionFile>
      <problemStatisticType>BEST_SCORE</problemStatisticType>
    </problemBenchmarks>
    <solver>
      <scanAnnotatedClasses/>
      <scoreDirectorFactory>
        <scoreDefinitionType>SIMPLE</scoreDefinitionType>
        <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
        <initializingScoreTrend>ONLY_DOWN</initializingScoreTrend>
      </scoreDirectorFactory>
      <termination>
        <minutesSpentLimit>1</minutesSpentLimit>
      </termination>
    </solver>
  </inheritedSolverBenchmark>

  <solverBenchmarkBluePrint>
    <solverBenchmarkBluePrintType>EVERY_CONSTRUCTION_HEURISTIC_TYPE_WITH_EVERY_LOCAL_SEARCH_TYPE</solverBenchmarkBluePrintType>
  </solverBenchmarkBluePrint>
</plannerBenchmark>

The following SolverBenchmarkBluePrintTypes are supported:

Benchmark logging is configured like the Solver logging.

To separate the log messages of each single benchmark run into a separate file, use the MDC with key singleBenchmark.name in a sifting appender. For example with Logback in logback.xml:

  <appender name="fileAppender" class="ch.qos.logback.classic.sift.SiftingAppender">
    <discriminator>
      <key>singleBenchmark.name</key>
      <defaultValue>app</defaultValue>
    </discriminator>
    <sift>
      <appender name="fileAppender.${singleBenchmark.name}" class="...FileAppender">
        <file>local/log/optaplannerBenchmark-${singleBenchmark.name}.log</file>
        ...
      </appender>
    </sift>
  </appender>

If you have multiple processors available on your computer, you can run multiple benchmarks in parallel on multiple threads to get your benchmarks results faster:

<plannerBenchmark>
  ...
  <parallelBenchmarkCount>AUTO</parallelBenchmarkCount>
  ...
</plannerBenchmark>

The following parallelBenchmarkCounts are supported:

To minimize the influence of your environment and the Random Number Generator on the benchmark results, configure the number of times each single benchmark run is repeated. The results of those runs are statistically aggregated. Each individual result is also visible in the report, as well as plotted in the best score distribution summary.

Just add a <subSingleCount> element to an <inheritedSolverBenchmark> element or in a <solverBenchmark> element:

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
  ...
  <inheritedSolverBenchmark>
    ...
    <solver>
      ...
    </solver>
    <subSingleCount>10<subSingleCount>
  </inheritedSolverBenchmark>
  ...
</plannerBenchmark>

The subSingleCount defaults to 1 (so no statistical benchmarking).

Note

If subSingleCount is higher than 1, the benchmarker will automatically use a different Random seed for every sub single run, without losing reproducibility (for each sub single index) in EnvironmentMode REPRODUCIBLE and lower.

Matrix benchmarking is benchmarking a combination of value sets. For example: benchmark 4 entityTabuSize values (5, 7, 11 and 13) combined with 3 acceptedCountLimit values (500, 1000 and 2000), resulting in 12 solver configurations.

To reduce the verbosity of such a benchmark configuration, you can use a Freemarker template for the benchmark configuration instead:

<plannerBenchmark>
  ...

  <inheritedSolverBenchmark>
    ...
  </inheritedSolverBenchmark>

<#list [5, 7, 11, 13] as entityTabuSize>
<#list [500, 1000, 2000] as acceptedCountLimit>
  <solverBenchmark>
    <name>entityTabuSize ${entityTabuSize} acceptedCountLimit ${acceptedCountLimit}</name>
    <solver>
      <localSearch>
        <unionMoveSelector>
          <changeMoveSelector/>
          <swapMoveSelector/>
        </unionMoveSelector>
        <acceptor>
          <entityTabuSize>${entityTabuSize}</entityTabuSize>
        </acceptor>
        <forager>
          <acceptedCountLimit>${acceptedCountLimit}</acceptedCountLimit>
        </forager>
      </localSearch>
    </solver>
  </solverBenchmark>
</#list>
</#list>
</plannerBenchmark>

And build it with the class PlannerBenchmarkFactory:

        PlannerBenchmarkFactory plannerBenchmarkFactory = PlannerBenchmarkFactory.createFromFreemarkerXmlResource(
                "org/optaplanner/examples/cloudbalancing/benchmark/cloudBalancingBenchmarkConfigTemplate.xml.ftl");
        PlannerBenchmark plannerBenchmark = plannerBenchmarkFactory.buildPlannerBenchmark();

The BenchmarkAggregator takes 1 or more existing benchmarks and merges them into new benchmark report, without actually running the benchmarks again.

This is useful to:

To use it, provide a PlannerBenchmarkFactory to the BenchmarkAggregatorFrame to display the GUI:

    public static void main(String[] args) {
        PlannerBenchmarkFactory plannerBenchmarkFactory = PlannerBenchmarkFactory.createFromXmlResource(
                "org/optaplanner/examples/nqueens/benchmark/nqueensBenchmarkConfig.xml");
        BenchmarkAggregatorFrame.createAndDisplay(plannerBenchmarkFactory);
    }

In the GUI, select the interesting benchmarks and click the button to generate the report.

Continuous planning is the technique of planning one or more upcoming planning windows at the same time and repeating that process monthly, weekly, daily or hourly. Because time is infinite, there are infinite future windows, so planning all future windows is impossible. Instead, plan only a fixed number of upcoming planning windows.

Past planning windows are immutable. The first upcoming planning window is considered stable (unlikely to change), while later upcoming planning windows are considered draft (likely to change during the next planning effort). Distant future planning windows are not planned at all.

Past planning windows have only immovable planning entities: the planning entities can no longer be changed (they are unable to move), but some of them are still needed in the score calculation, as they might affect some of the score constraints that apply on the upcoming planning entities. For example: when an employee should not work more than 5 days in a row, he shouldn't work today and tomorrow if he worked the past 4 days already.

Sometimes some planning entities are semi-immovable: they can be changed, but occur a certain score penalty if they differ from their original place. For example: avoid rescheduling hospital beds less than 2 days before the patient arrives (unless it's really worth it), avoid changing the airplane gate during the 2 hours before boarding (unless there is no alternative), ...

Notice the difference between the original planning of November 1th and the new planning of November 5th: some problem facts (F, H, I, J, K) changed, which results in unrelated planning entities (G) changing too.

To do real-time planning, first combine backup planning and continuous planning with short planning windows to lower the burden of real-time planning. As time passes, the problem itself changes:

In the example above, 3 customers are added at different times (07:56, 08:02 and 08:45), after the original customer set finished solving at 07:55 and in some cases after the vehicles already left. Planner can handle such scenario's with ProblemFactChange (in combination with immovable planning entities).

While the Solver is solving, an outside event might want to change one of the problem facts, for example an airplane is delayed and needs the runway at a later time. Do not change the problem fact instances used by the Solver while it is solving (from another thread or even in the same thread), as that will corrupt it. Instead, add a ProblemFactChange to the Solver which it will execute in the solver thread as soon as possible.

public interface Solver {

    ...

    boolean addProblemFactChange(ProblemFactChange problemFactChange);

    boolean isEveryProblemFactChangeProcessed();

    ...

}
public interface ProblemFactChange {

    void doChange(ScoreDirector scoreDirector);

}

Here's an example:

    public void deleteComputer(final CloudComputer computer) {
        solver.addProblemFactChange(new ProblemFactChange() {
            public void doChange(ScoreDirector scoreDirector) {
                CloudBalance cloudBalance = (CloudBalance) scoreDirector.getWorkingSolution();
                // First remove the problem fact from all planning entities that use it
                for (CloudProcess process : cloudBalance.getProcessList()) {
                    if (ObjectUtils.equals(process.getComputer(), computer)) {
                        scoreDirector.beforeVariableChanged(process, "computer");
                        process.setComputer(null);
                        scoreDirector.afterVariableChanged(process, "computer");
                    }
                }
                // A SolutionCloner does not clone problem fact lists (such as computerList)
                // Shallow clone the computerList so only workingSolution is affected, not bestSolution or guiSolution
                cloudBalance.setComputerList(new ArrayList<CloudComputer>(cloudBalance.getComputerList()));
                // Next remove it the problem fact itself
                for (Iterator<CloudComputer> it = cloudBalance.getComputerList().iterator(); it.hasNext(); ) {
                    CloudComputer workingComputer = it.next();
                    if (ObjectUtils.equals(workingComputer, computer)) {
                        scoreDirector.beforeProblemFactRemoved(workingComputer);
                        it.remove(); // remove from list
                        scoreDirector.afterProblemFactRemoved(workingComputer);
                        break;
                    }
                }
            }
        });
    }

Important

To write a ProblemFactChange correctly, it's important to understand the behaviour of a planning clone:

  • Any change in a ProblemFactChange must be done on the Solution instance of scoreDirector.getWorkingSolution(). The workingSolution is a planning clone of the BestSolutionChangedEvent's bestSolution. So the workingSolution in the Solver is never the same instance as the Solution in the rest of your application.

  • A planning clone also clones the planning entities and planning entity collections. So any change on the planning entities must happen on the instances hold by scoreDirector.getWorkingSolution().

  • A planning clone does not clone the problem facts, nor the problem fact collections. Therefore the workingSolution and the bestSolution share the same problem fact instances and the same problem fact list instances.

    Any problem fact or problem fact list changed by a ProblemFactChange must be problem cloned first (which can imply rerouting references in other problem facts and planning entities). Otherwise, if the workingSolution and bestSolution are used in different threads (for example a solver thread and a GUI event thread), a race condition can occur.

Note

Many types of changes can leave a planning entity uninitialized, resulting in a partially initialized solution. That's fine, as long as the first solver phase can handle it. All construction heuristics solver phases can handle that, so it's recommended to configure such a solver phase as the first phase.

In essence, the Solver stops, runs the ProblemFactChange and restarts. This is a warm start because its initial solution is the adjusted best solution of the previous run. Each solver phase runs again. This implies the construction heuristic runs again, but because little or no planning variables are uninitialized (unless you have a nullable planning variable), it finishes much quicker than in a cold start.

Each configured Termination resets (both in solver and phase configuration), but a previous call to terminateEarly() is not undone. Normally however, you won't configure any Termination (except in daemon mode), just call Solver.terminateEarly() when the results are needed. Alternatively, do configure a Termination and use the daemon mode in combination with BestSolutionChangedEvent as described below.

In real-time planning, it's often useful to have a solver thread wait when it runs out of work, and immediately resume solving a problem once new problem fact changes are added. Putting the Solver in daemon mode has these effects:

To configure the daemon mode:

<solver>
  <daemon>true</daemon>
  ...
</solver>

Subscribe to the BestSolutionChangedEvent to process new best solutions found by the solver thread. A BestSolutionChangedEvent doesn't guarantee that every ProblemFactChange has been processed already, nor that the solution is initialized and feasible. To ignore BestSolutionChangedEvents with such invalid solutions, do this:

    public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) {
        // Ignore invalid solutions
        if (event.isEveryProblemFactChangeProcessed()
                && event.isNewBestSolutionInitialized()
                && event.getNewBestSolution().getScore().isFeasible()) {
            ...
        }
    }

Enrich the domain POJO's (solution, entities and problem facts) with JPA annotations to store them in a database.

Add a dependency to the optaplanner-persistence-jpa jar to take advantage of these extra integration features:

When a Score is persisted into a relational database, JPA and Hibernate will default to Java serializing it to a BLOB column. This has several disadvantages:

To avoid these issues, configure it to use 2 INTEGER columns instead by using the appropriate *ScoreHibernateType for your Score type, for example for a HardSoftScore:

@PlanningSolution
@Entity
@TypeDef(defaultForType = HardSoftScore.class, typeClass = HardSoftScoreHibernateType.class)
public class CloudBalance implements Solution<HardSoftScore> {

    @Columns(columns = {@Column(name = "hardScore"), @Column(name = "softScore")})
    protected HardSoftScore score;

    ...
}

In this case, the DDL will look like this:

CREATE TABLE CloudBalance(
    ...
    hardScore INTEGER,
    softScore INTEGER
);

When using a BigDecimal based Score, specify the precision and scale of the columns to avoid silent rounding:

@PlanningSolution
@Entity
@TypeDef(defaultForType = HardSoftBigDecimalScore.class, typeClass = HardSoftBigDecimalScoreHibernateType.class)
public class CloudBalance implements Solution<HardSoftBigDecimalScore> {

    @Columns(columns = {
            @Column(name = "hardScore", precision = 10, scale = 5),
            @Column(name = "softScore", precision = 10, scale = 5)})
    protected HardSoftBigDecimalScore score;

    ...
}

When using any type of bendable Score, specify the hard and soft level sizes as parameters:

@PlanningSolution
@Entity
@TypeDef(defaultForType = BendableScore.class, typeClass = BendableScoreHibernateType.class, parameters = {
        @Parameter(name = "hardLevelsSize", value = "3"),
        @Parameter(name = "softLevelsSize", value = "2")})
public class Schedule implements Solution<BendableScore> {

    @Columns(columns = {
            @Column(name = "hard0Score"),
            @Column(name = "hard1Score"),
            @Column(name = "hard2Score"),
            @Column(name = "soft0Score"),
            @Column(name = "soft1Score")})
    protected BendableScore score;

    ...
}

All this support is Hibernate specific because currently JPA 2.1's converters do not support converting to multiple columns.

In JPA and Hibernate, there is usually a @ManyToOne relationship from most problem fact classes to the planning solution class. Therefore, the problem fact classes reference the planning solution class, which implies that when the solution is planning cloned, they need to be cloned too. Use an @DeepPlanningClone on each such problem fact class to enforce that:

@PlanningSolution // OptaPlanner annotation
@Entity // JPA annotation
public class Conference {

    @OneToMany(mappedBy="conference")
    private List<Room> roomList;

    ...
}
@DeepPlanningClone // OptaPlanner annotation: Force the default planning cloner to planning clone this class too
@Entity // JPA annotation
public class Room {

    @ManyToOne
    private Conference conference; // Because of this reference, this problem fact needs to be planning cloned too

}

Neglecting to do this can lead to persisting duplicate solutions, JPA exceptions or other side effects.

Camel is an enterprise integration framework which includes support for Planner (starting from Camel 2.13). It can expose a use case as a REST service, a SOAP service, a JMS service, ...

Read the documentation for the camel-optaplanner component. That component works in Karaf too.

To deploy an Planner web application on WildFly, simply include the optaplanner dependency jars in the war file's WEB-INF/lib directory (just like any other dependency) as shown in the optaplanner-webexamples-*.war. However, in this approach the war file can easily grow to several MB in size, which is fine for a one-time deployment, but too heavyweight for frequent redeployments (especially over a slow network connection).

The remedy is to use deliver the optaplanner jars in a JBoss module to WildFly and create a skinny war. Let's create an module called org.optaplanner:

Because of JBoss Modules' ClassLoader magic, you'll likely need to provide the ClassLoader of your classes during the SolverFactory creation, so it can find the classpath resources (such as the solver config, score DRL's and domain classes) in your jars.

Android is not a complete JVM (because some JDK libraries are missing), but Planner works on Android with easy Java or incremental Java score calculation. The Drools rule engine does not work on Android yet, so Drools score calculation doesn't work on Android and its dependencies need to be excluded.

Workaround to use Planner on Android:

  1. Add a dependency to the build.gradle file in your Android project to exclude org.drools and xmlpull dependencies:

    dependencies {
        ...
        compile('org.optaplanner:optaplanner-core:...') {
            exclude group: 'xmlpull'
            exclude group: 'org.drools'
        }
        ...
    }

Dealing with time and dates in planning problems may be problematic because it is dependent on the needs of your use case.

There are several representations of timestamps, dates, durations and periods in Java. Choose the right representation type for your use case:

There are also several designs for assigning a planning entity to a starting time (or date):

  • The starting time is fixed beforehand. It is not a planning variable (in such solver).

  • The starting time is not fixed, it is a planning variable (genuine or shadow).

    • If all planning entities have the same duration, use the Timeslot pattern.

      • For example in course scheduling, all lectures take 1 hour. Therefore, each timeslot is 1 hour.

    • If the duration differs and time is rounded to a specifc time granularity (for example 5 minutes) use the TimeGrain pattern.

      • For example in meeting scheduling, all meetings start at 15 minute intervals. All meetings take 15, 30, 45, 60, 90 or 120 minutes.

    • If the duration differs and one task starts immediately after the previous task (assigned to the same executor) finishes, use the Chained Through Time pattern.

      • For example in time windowed vehicle routing, each vehicle departs immediately to the next customer when the delivery for the previous customer finishes.

Choose the right pattern depending on the use case:

If all planning entities have the same duration (or can be inflated to the same duration), the Timeslot pattern is useful. The planning entities are assigned to a timeslot rather than time. For example in course timetabling, all lectures take 1 hour.

The timeslots can start at any time. For example, the timeslots start at 8:00, 9:00, 10:15 (after a 15-minute break), 11:15, ... They can even overlap, but that is unusual.

It is also usable if all planning entities can be inflated to the same duration. For example in exam timetabling, some exams take 90 minutes and others 120 minutes, but all timeslots are 120 minutes. When an exam of 90 minutes is assigned to a timeslot, for the remaining 30 minutes, its seats are occupied too and cannot be used by another exam.

Usually there is a second planning variable, for example the room. In course timetabling, two lectures are in conflict if they share the same room at the same timeslot. However, in exam timetabling, that is allowed, if there is enough seating capacity in the room (although mixed exam durations in the same room do inflict a soft score penalty).

Assigning humans to start a meeting at 4 seconds after 9 o'clock is pointless because most human activities have a time granularity of 5 minutes or 15 minutes. Therefore it is not necessary to allow a planning entity to be assigned subsecond, second or even 1 minute accuracy. The 5 minute or 15 minutes accuracy suffices. The TimeGrain pattern models such time accuracy by partitioning time as time grains. For example in meeting scheduling, all meetings start/end in hour, half hour, or 15-minute intervals before or after each hour, therefore the optimal settings for time grains is 15 minutes.

Each planning entity is assigned to a start time grain. The end time grain is calculated by adding the duration in grains to the starting time grain. Overlap of two entities is determined by comparing their start and end time grains.

This pattern also works well with a coarser time granularity (such as days, half days, hours, ...). With a finer time granularity (such as seconds, milliseconds, ...) and a long time window, the value range (and therefore the search space) can become too high, which reduces efficiency and scalability. However, such solution is not impossible, as shown in cheap time scheduling.

If a person or a machine continuously works on 1 task at a time in sequence, which means starting a task when the previous is finished (or with a deterministic delay), the Chained Through Time pattern is useful. For example, in the vehicle routing with time windows example, a vehicle drives from customer to customer (thus it handles one customer at a time).

In this pattern, the planning entities are chained. The anchor determines the starting time of its first planning entity. The second entity's starting time is calculated based on the starting time and duration of the first entity. For example, in task assignment, Beth (the anchor) starts working at 8:00, thus her first task starts at 8:00. It lasts 52 mins, therefore her second task starts at 8:52. The starting time of an entity is usually a shadow variable.

An anchor has only one chain. Although it is possible to split up the anchor into two separate anchors, for example split up Beth into Beth's left hand and Beth's right hand (because she can do two tasks at the same time), this model makes pooling resources difficult. Consequently, using this model in the exam scheduling example to allow two or more exams to use the same room at the same time is problematic.

Between planning entities, there are three ways to create gaps:

  • No gaps: This is common when the anchor is a machine. For example, a build server always starts the next job when the previous finishes, without a break.

  • Only deterministic gaps: This is common for humans. For example, any task that crosses the 10:00 barrier gets an extra 15 minutes duration so the human can take a break.

    • A deterministic gap can be subjected to complex business logic. For example in vehicle routing, a cross-continent truck driver needs to rest 15 minutes after 2 hours of driving (which may also occur during loading or unloading time at a customer location) and also needs to rest 10 hours after 14 hours of work.

  • Planning variable gaps: This is uncommon, because an extra planning variable (which impacts the search space) reduces efficiency and scalability.

  1. Fail fast. There are several levels of fail fast, from better to worse:

  2. Exception messages

    1. The Exception message must include the name and state of each relevant variable. For example:

      if (fooSize < 0) {
          throw new IllegalArgumentException("The fooSize (" + fooSize + ") of bar (" + this + ") must be positive.");
      }

      Notice that the output clearly explains what's wrong:

      Exception in thread "main" java.lang.IllegalArgumentException: The fooSize (-5) of bar (myBar) must be positive.
          at ...
    2. Whenever possible, the Exception message must include context.

    3. Whenever the fix is not obvious, the Exception message should include advice. Advice normally starts with the word maybe on a new line:

      Exception in thread "main" java.lang.IllegalStateException: The valueRangeDescriptor (fooRange) is nullable, but not countable (false).
      Maybe the member (getFooRange) should return CountableValueRange.
          at ...

      The word maybe is to indicate that the advice is not guaranteed to be right in all cases.

  3. Generics. The Solution class is often passed as a generic type parameter to subsystems. The PlanningEntity class(es) are rarely passed as a generic type parameter.