
OptaPlanner User Guide
The OptaPlanner Team

Version 7.36.0.Final

Table of Contents
1. OptaPlanner Introduction . 1

1.1. What is OptaPlanner? . 1

1.2. What is a planning problem?. 2

1.2.1. A planning problem is NP-complete or NP-hard . 4

1.2.2. A planning problem has (hard and soft) constraints . 4

1.2.3. A planning problem has a huge search space . 4

1.3. Requirements. 5

1.4. Governance . 6

1.4.1. Status of OptaPlanner . 6

1.4.2. Release notes . 6

1.4.3. Backwards compatibility. 6

1.4.4. Community and support . 7

1.4.5. Relationship with Drools and jBPM . 7

1.5. Download and run the examples . 8

1.5.1. Get the release ZIP and run the examples . 8

1.5.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans) . 10

1.5.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr, or ANT. 11

1.5.4. Build OptaPlanner from source. 12

2. Getting started: a cloud balancing demonstration. 14

2.1. Cloud balancing tutorial . 14

2.1.1. Problem description. 14

2.1.2. Problem size. 16

2.2. Using the domain model . 17

2.2.1. Domain model design . 17

2.2.2. Domain model implementation . 18

2.3. Run the cloud balancing Hello World . 21

2.4. Solver configuration . 23

2.5. Score configuration . 24

2.5.1. Easy Java score configuration . 25

2.5.2. Drools score configuration . 27

2.6. Beyond this tutorial . 29

3. Use cases and examples . 30

3.1. Examples overview . 30

3.2. N queens . 34

3.2.1. Problem description. 34

3.2.2. Problem size. 35

3.2.3. Domain model . 36

3.3. Cloud balancing . 37

3.4. Traveling salesman (TSP - traveling salesman problem) . 38

3.4.1. Problem description. 38

3.4.2. Problem size. 38

3.4.3. Problem difficulty . 38

3.5. Dinner party . 39

3.5.1. Problem description. 39

3.5.2. Problem size. 39

3.6. Tennis club scheduling . 40

3.6.1. Problem description. 40

3.6.2. Problem size. 40

3.6.3. Domain model . 40

3.7. Meeting scheduling . 41

3.7.1. Problem description. 41

3.7.2. Problem size. 42

3.8. Course timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling) 42

3.8.1. Problem description. 42

3.8.2. Problem size. 43

3.8.3. Domain model . 43

3.9. Machine reassignment (Google ROADEF 2012) . 44

3.9.1. Problem description. 44

3.9.2. Value proposition . 45

3.9.3. Problem size. 46

3.9.4. Domain model . 47

3.10. Vehicle routing . 48

3.10.1. Problem description. 48

3.10.2. Value proposition . 50

3.10.3. Problem size. 50

3.10.4. Domain model . 54

3.11. Project job scheduling . 59

3.11.1. Problem description. 59

3.11.2. Problem size. 60

3.12. Hospital bed planning (PAS - Patient Admission Scheduling) . 61

3.12.1. Problem description. 61

3.12.2. Problem size. 63

3.12.3. Domain model . 63

3.13. Task assigning . 64

3.13.1. Problem description. 64

3.13.2. Value proposition . 65

3.13.3. Problem size. 65

3.13.4. Domain model . 65

3.14. Exam timetabling (ITC 2007 track 1 - Examination) . 66

3.14.1. Problem description. 66

3.14.2. Problem size. 68

3.14.3. Domain model . 68

3.15. Nurse rostering (INRC 2010) . 69

3.15.1. Problem description. 69

3.15.2. Value proposition . 71

3.15.3. Problem size. 71

3.15.4. Domain model . 74

3.16. Traveling tournament problem (TTP) . 74

3.16.1. Problem description. 74

3.16.2. Problem size. 75

3.17. Cheap time scheduling . 76

3.17.1. Problem description. 76

3.17.2. Problem size. 77

3.18. Investment asset class allocation (portfolio optimization) . 80

3.18.1. Problem description. 80

3.18.2. Problem size. 80

3.19. Conference scheduling . 80

3.19.1. Problem description. 80

3.19.2. Value proposition . 85

3.19.3. Problem size. 85

3.19.4. Architecture . 85

3.19.5. Domain model . 86

3.19.6. Search space. 87

3.20. Rock tour . 89

3.20.1. Problem description. 89

3.20.2. Problem size. 90

3.21. Flight crew scheduling . 90

3.21.1. Problem description. 90

3.21.2. Problem size. 90

4. OptaPlanner configuration . 91

4.1. Overview . 91

4.2. Solver configuration . 91

4.2.1. Solver configuration by XML . 91

4.2.2. Solver configuration by Java API . 93

4.2.3. Annotations configuration . 94

4.2.4. Custom properties configuration . 96

4.3. Model a planning problem. 96

4.3.1. Is this class a problem fact or planning entity?. 96

4.3.2. Problem fact . 97

4.3.3. Planning entity . 98

4.3.4. Planning variable (genuine). 101

4.3.5. Planning value and planning value range . 103

4.3.6. Planning problem and planning solution. 111

4.4. Use the Solver . 121

4.4.1. The Solver interface . 121

4.4.2. Solving a problem. 122

4.4.3. Environment mode: are there bugs in my code? . 123

4.4.4. Logging level: what is the Solver doing? . 124

4.4.5. Random number generator . 128

4.5. SolverManager . 129

4.5.1. Solve batch problems. 130

4.5.2. Solve and listen to show progress to the end-user . 131

5. Score calculation . 133

5.1. Score terminology . 133

5.1.1. What is a score? . 133

5.1.2. Formalize the business constraints . 133

5.1.3. Score constraint signum (positive or negative) . 134

5.1.4. Score constraint weight. 135

5.1.5. Score constraint level (hard, soft, …) . 136

5.1.6. Pareto scoring (AKA multi-objective optimization scoring) . 138

5.1.7. Combining score techniques . 140

5.1.8. Score interface . 140

5.1.9. Avoid floating point numbers in score calculation . 141

5.2. Choose a score type . 143

5.2.1. SimpleScore . 143

5.2.2. HardSoftScore (Recommended) . 143

5.2.3. HardMediumSoftScore . 143

5.2.4. BendableScore . 144

5.2.5. Implementing a custom score . 144

5.3. Calculate the Score . 145

5.3.1. Score calculation types . 145

5.3.2. Easy Java score calculation . 145

5.3.3. Incremental Java score calculation . 147

5.3.4. InitializingScoreTrend . 152

5.3.5. Invalid score detection . 153

5.4. Score calculation performance tricks . 154

5.4.1. Overview. 154

5.4.2. Score calculation speed . 154

5.4.3. Incremental score calculation (with deltas). 154

5.4.4. Avoid calling remote services during score calculation . 156

5.4.5. Pointless constraints . 156

5.4.6. Built-in hard constraint. 157

5.4.7. Other score calculation performance tricks . 157

5.4.8. Score trap . 157

5.4.9. stepLimit benchmark. 159

5.4.10. Fairness score constraints . 159

5.5. Constraint configuration: adjust constraint weights dynamically . 161

5.5.1. Create a constraint configuration. 162

5.5.2. Add a constraint weight for each constraint . 163

5.6. Explaining the score: which constraints are broken? . 165

5.6.1. Using score calculation outside the Solver . 166

5.6.2. Constraint match total: break down the score by constraint. 167

5.6.3. Indictment heat map: visualize the hot planning entities . 168

5.7. Testing score constraints with JUnit . 168

6. Constraint streams score calculation . 171

6.1. Introduction. 171

6.2. Creating a constraint stream . 173

6.3. Constraint stream cardinality . 174

6.4. Building blocks . 175

6.4.1. Penalties and rewards . 175

6.4.2. Filtering. 176

6.4.3. Joining . 177

6.4.4. Grouping and collectors . 179

6.4.5. Conditional propagation . 183

6.5. Variant implementation types. 185

7. Drools score calculation . 186

7.1. Overview . 186

7.2. Drools score rules configuration . 186

7.2.1. A scoreDrl resource on the classpath. 186

7.2.2. A scoreDrlFile element . 187

7.2.3. A ksessionName in a KJAR from a Maven repository . 187

7.3. Implementing a score rule . 188

7.4. Weighing score rules . 189

8. Shadow variable. 192

8.1. Introduction. 192

8.2. Bi-directional variable (inverse relation shadow variable) . 193

8.3. Anchor shadow variable. 195

8.4. Custom VariableListener . 196

8.5. VariableListener triggering order . 198

9. Optimization algorithms . 201

9.1. Search space size in the real world . 201

9.2. Does OptaPlanner find the optimal solution? . 202

9.3. Architecture overview . 203

9.4. Optimization algorithms overview . 204

9.5. Which optimization algorithms should I use? . 206

9.6. Power tweaking or default parameter values. 207

9.7. Solver phase. 207

9.8. Scope overview . 209

9.9. Termination . 210

9.9.1. Time spent termination. 211

9.9.2. Unimproved time spent termination. 212

9.9.3. BestScoreTermination . 214

9.9.4. BestScoreFeasibleTermination . 215

9.9.5. StepCountTermination . 215

9.9.6. UnimprovedStepCountTermination . 216

9.9.7. ScoreCalculationCountTermination . 216

9.9.8. Combining multiple terminations . 216

9.9.9. Asynchronous termination from another thread. 217

9.10. SolverEventListener . 217

9.11. Custom solver phase . 218

9.12. No change solver phase . 220

9.13. Multithreaded solving. 220

9.13.1. @PlanningId . 221

9.13.2. Custom thread factory (WildFly, Android, GAE, …) . 222

9.13.3. Multithreaded incremental solving . 222

10. Move and neighborhood selection . 225

10.1. Move and neighborhood introduction . 225

10.1.1. What is a Move? . 225

10.1.2. What is a MoveSelector?. 226

10.1.3. Subselecting of entities, values, and other moves . 226

10.2. Generic MoveSelectors . 227

10.2.1. Generic MoveSelectors overview. 228

10.2.2. ChangeMoveSelector . 228

10.2.3. SwapMoveSelector . 230

10.2.4. Pillar-based move selectors . 231

10.2.5. Move selectors for chained variables . 236

10.3. Combining multiple MoveSelectors. 239

10.3.1. unionMoveSelector . 239

10.3.2. cartesianProductMoveSelector . 241

10.4. EntitySelector. 242

10.5. ValueSelector. 242

10.6. General Selector features . 243

10.6.1. CacheType: create moves ahead of time or just in time . 243

10.6.2. SelectionOrder: original, sorted, random, shuffled, or probabilistic 244

10.6.3. Recommended combinations of CacheType and SelectionOrder . 245

10.6.4. Filtered selection . 248

10.6.5. Sorted selection. 251

10.6.6. Probabilistic selection . 255

10.6.7. Limited selection . 256

10.6.8. Mimic selection (record/replay) . 256

10.6.9. Nearby selection . 257

10.7. Custom moves . 260

10.7.1. Which move types might be missing in my implementation? . 260

10.7.2. Custom moves introduction. 261

10.7.3. The Move interface. 261

10.7.4. Generating custom moves . 265

11. Exhaustive search . 269

11.1. Overview . 269

11.2. Brute force . 269

11.2.1. Algorithm description . 269

11.2.2. Configuration. 270

11.3. Branch and bound . 270

11.3.1. Algorithm description . 270

11.3.2. Configuration. 271

11.4. Scalability of exhaustive search . 273

12. Construction heuristics. 276

12.1. Overview . 276

12.2. First fit. 276

12.2.1. Algorithm description . 276

12.2.2. Configuration. 277

12.3. First fit decreasing . 277

12.3.1. Algorithm description . 277

12.3.2. Configuration. 278

12.4. Weakest fit . 279

12.4.1. Algorithm description . 279

12.4.2. Configuration. 279

12.5. Weakest fit decreasing . 279

12.5.1. Algorithm description . 279

12.5.2. Configuration. 280

12.6. Strongest fit . 280

12.6.1. Algorithm description . 280

12.6.2. Configuration. 280

12.7. Strongest fit decreasing . 281

12.7.1. Algorithm description . 281

12.7.2. Configuration. 281

12.8. Allocate entity from queue . 282

12.8.1. Algorithm description . 282

12.8.2. Configuration. 282

12.8.3. Multiple entity classes . 283

12.8.4. Pick early type . 284

12.9. Allocate to value from queue . 285

12.9.1. Algorithm description . 285

12.9.2. Configuration. 286

12.10. Cheapest insertion . 286

12.10.1. Algorithm description . 286

12.10.2. Configuration . 287

12.11. Regret insertion . 288

12.11.1. Algorithm description . 288

12.11.2. Configuration . 288

12.12. Allocate from pool . 288

12.12.1. Algorithm description . 288

12.12.2. Configuration . 288

12.13. Scaling construction heuristics. 289

12.13.1. InitializingScoreTrend shortcuts . 289

12.13.2. Scaling multiple planning variables in construction heuristics . 290

12.13.3. Other scaling techniques in construction heuristics . 292

13. Local search . 293

13.1. Overview . 293

13.2. Local search concepts . 293

13.2.1. Step by step . 293

13.2.2. Decide the next step. 295

13.2.3. Acceptor . 297

13.2.4. Forager . 297

13.3. Hill climbing (simple local search). 299

13.3.1. Algorithm description . 299

13.3.2. Stuck in local optima . 300

13.3.3. Configuration. 300

13.4. Tabu search . 301

13.4.1. Algorithm description . 301

13.4.2. Configuration. 302

13.5. Simulated annealing . 304

13.5.1. Algorithm description . 304

13.5.2. Configuration. 304

13.6. Late acceptance . 305

13.6.1. Algorithm description . 305

13.6.2. Configuration. 306

13.7. Great Deluge . 307

13.7.1. Algorithm Description. 307

13.7.2. Configuration. 307

13.8. Step counting hill climbing . 308

13.8.1. Algorithm description . 308

13.8.2. Configuration. 309

13.9. Strategic oscillation . 309

13.9.1. Algorithm description . 309

13.9.2. Configuration. 309

13.10. Variable neighborhood descent . 310

13.10.1. Algorithm description . 310

13.10.2. Configuration . 310

13.11. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector, or Acceptor . . . 311

14. Evolutionary algorithms . 312

14.1. Overview . 312

14.2. Evolutionary strategies . 312

14.3. Genetic algorithms. 312

15. Hyperheuristics . 313

15.1. Overview . 313

16. Partitioned search . 314

16.1. Algorithm description . 314

16.2. Configuration . 315

16.3. Partitioning a solution . 316

16.3.1. Custom SolutionPartitioner . 316

16.4. Runnable part thread limit . 318

17. Benchmarking and tweaking . 321

17.1. Find the best solver configuration . 321

17.2. Benchmark configuration . 321

17.2.1. Add a dependency on optaplanner-benchmark . 321

17.2.2. Run a simple benchmark . 322

17.2.3. Configure and run an advanced benchmark. 322

17.2.4. SolutionFileIO: input and output of solution files . 324

17.2.5. Warming up the HotSpot compiler . 326

17.2.6. Benchmark blueprint: a predefined configuration . 327

17.2.7. Write the output solution of benchmark runs . 328

17.2.8. Benchmark logging . 328

17.3. Benchmark report . 329

17.3.1. HTML report . 329

17.3.2. Ranking the solvers . 329

17.4. Summary statistics. 330

17.4.1. Best score summary (graph and table) . 330

17.4.2. Best score scalability summary (graph) . 331

17.4.3. Best score distribution summary (graph). 331

17.4.4. Winning score difference summary (graph And table) . 332

17.4.5. Worst score difference percentage (ROI) summary (graph And table) 332

17.4.6. Score calculation speed summary (graph And table) . 332

17.4.7. Time spent summary (graph And table) . 333

17.4.8. Time spent scalability summary (graph) . 333

17.4.9. Best score per time spent summary (graph) . 333

17.5. Statistic per dataset (graph and CSV). 333

17.5.1. Enable a problem statistic . 333

17.5.2. Best score over time statistic (graph and CSV) . 334

17.5.3. Step score over time statistic (graph and CSV) . 336

17.5.4. Score calculation speed over time statistic (graph and CSV) . 337

17.5.5. Best solution mutation over time statistic (graph and CSV) . 338

17.5.6. Move count per step statistic (graph and CSV) . 339

17.5.7. Memory use statistic (graph and CSV) . 340

17.6. Statistic per single benchmark (graph and CSV). 341

17.6.1. Enable a single statistic . 341

17.6.2. Constraint match total best score over time statistic (graph and CSV) 342

17.6.3. Constraint match total step score over time statistic (graph and CSV) 343

17.6.4. Picked move type best score diff over time statistic (graph and CSV) 344

17.6.5. Picked move type step score diff over time statistic (graph and CSV) 345

17.7. Advanced benchmarking . 346

17.7.1. Benchmarking performance tricks . 346

17.7.2. Statistical benchmarking . 347

17.7.3. Template-based benchmarking and matrix benchmarking . 348

17.7.4. Benchmark report aggregation. 350

18. Repeated planning. 353

18.1. Introduction to repeated planning . 353

18.2. Backup planning. 353

18.3. Overconstrained planning . 354

18.3.1. Overconstrained planning with nullable variables . 354

18.3.2. Overconstrained planning with virtual values . 355

18.4. Continuous planning (windowed planning) . 356

18.4.1. Immovable planning entities. 359

18.4.2. Nonvolatile replanning to minimize disruption (semi-movable planning entities) . . . 361

18.5. Real-time planning. 362

18.5.1. ProblemFactChange . 363

18.5.2. Daemon: solve() does not return . 367

19. Integration. 369

19.1. Overview . 369

19.2. Persistent storage . 369

19.2.1. Database: JPA and Hibernate. 369

19.2.2. XML or JSON: XStream . 373

19.2.3. XML or JSON: JAXB. 374

19.2.4. JSON: Jackson. 375

19.2.5. JSON: JSON-B . 377

19.3. Quarkus . 378

19.4. Spring Boot . 378

19.5. SOA and ESB . 379

19.5.1. Camel and Karaf . 379

19.6. Other environments . 379

19.6.1. JBoss Modules, WildFly, and JBoss EAP. 379

19.6.2. Java platform module system (Jigsaw) . 381

19.6.3. OSGi . 382

19.6.4. Android . 382

19.7. Integration with human planners (politics) . 383

19.8. Sizing hardware and software . 384

20. Design patterns. 388

20.1. Design patterns introduction . 388

20.2. Domain Modeling Guidelines . 388

20.3. Assigning time to planning entities . 391

20.3.1. Timeslot pattern: assign to a fixed-length timeslot . 394

20.3.2. TimeGrain pattern: assign to a starting TimeGrain . 394

20.3.3. Chained through time pattern: assign in a chain that determines starting time 395

20.3.4. Time bucket pattern: assign to a capacitated bucket per time period. 398

20.4. Multi-stage Planning . 398

20.5. Cloud architecture patterns. 399

21. Development . 401

21.1. Methodology overview . 401

21.2. Development guidelines . 402

21.2.1. Fail fast . 402

21.2.2. Exception messages . 402

21.2.3. Generics . 403

21.2.4. Lifecycle . 403

Chapter 1. OptaPlanner Introduction

1.1. What is OptaPlanner?
Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). OptaPlanner optimizes such planning
to do more business with less resources. This is known as Constraint Satisfaction Programming
(which is part of the Operations Research discipline).

OptaPlanner is a lightweight, embeddable constraint satisfaction engine which optimizes planning
problems. It solves use cases such as:

• Employee shift rostering: timetabling nurses, repairmen, …

• Agenda scheduling: scheduling meetings, appointments, maintenance jobs, advertisements, …

• Educational timetabling: scheduling lessons, courses, exams, conference presentations, …

• Vehicle routing: planning vehicle routes (trucks, trains, boats, airplanes, …) for moving freight
and/or passengers through multiple destinations using known mapping tools …

• Bin packing: filling containers, trucks, ships, and storage warehouses with items, but also
packing information across computer resources, as in cloud computing …

• Job shop scheduling: planning car assembly lines, machine queue planning, workforce task
planning, …

• Cutting stock: minimizing waste while cutting paper, steel, carpet, …

• Sport scheduling: planning games and training schedules for football leagues, baseball leagues,
…

• Financial optimization: investment portfolio optimization, risk spreading, …

1

https://www.optaplanner.org

1.2. What is a planning problem?

2

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:

• Maximized profits - the optimal goal results in the highest possible profit.

• Minimized ecological footprint - the optimal goal has the least amount of environmental impact.

• Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available, such as:

• The number of people.

• Amount of time.

• Budget.

• Physical assets, for example, machinery, vehicles, computers, buildings, etc.

Specific constraints related to these resources must also be taken into account, such as the number
of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

OptaPlanner helps JavaTM programmers solve constraint satisfaction problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

3

1.2.1. A planning problem is NP-complete or NP-hard

All the use cases above are probably NP-complete/NP-hard, which means in layman’s terms:

• It’s easy to verify a given solution to a problem in reasonable time.

• There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, there’s a $ 1,000,000 reward for anyone that proves if such a silver bullet
actually exists or not.

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the two common techniques won’t suffice:

• A Brute Force algorithm (even a smarter variant) will take too long.

• A quick algorithm, for example in bin packing, putting in the largest items first, will return a
solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a good solution in
reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints

Usually, a planning problem has at least two levels of constraints:

• A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

• A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

Some problems have positive constraints too:

• A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning.

Some basic problems (such as N queens) only have hard constraints. Some problems have three or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each
solution of a planning problem can be graded with a score. With OptaPlanner, score constraints
are written in an Object Oriented language, such as JavaTM code or Drools rules. Such code is
easy, flexible and scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions. There are several categories of solutions:

4

https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/P_%3D_NP_problem
https://en.wikipedia.org/wiki/P_%3D_NP_problem

• A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

• A feasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

• An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there are
no feasible solutions and the optimal solution isn’t feasible.

• The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time, it’s
an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10^80). Because there is no silver bullet
to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms
perform better than others, but it’s impossible to tell in advance. With OptaPlanner, it is easy to
switch the optimization algorithm, by changing the solver configuration in a few lines of XML or
code.

1.3. Requirements
OptaPlanner is open source software, released under the Apache License 2.0. This license is very
liberal and allows reuse for commercial purposes. Read the layman’s explanation.

OptaPlanner is 100% pure JavaTM and runs on any JVM 8 or higher. It integrates very easily with
other JavaTM technologies. OptaPlanner is available in the Maven Central Repository.

OptaPlanner works on any Java Virtual Machine and is compatible with Standard Java, Enterprise
Java, and all JVM languages.

5

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN

1.4. Governance

1.4.1. Status of OptaPlanner

OptaPlanner is stable, reliable and scalable. It has been heavily tested with unit, integration, and
stress tests, and is used in production throughout the world. One example handles over 50 000
variables with 5000 variables each, multiple constraint types and billions of possible constraint
matches.

1.4.2. Release notes

We release every month. Read the release notes of each release on our website.

1.4.3. Backwards compatibility

OptaPlanner separates its API and implementation:

• Public API: All classes in the package namespace org.optaplanner.core.api are 100%
backwards compatible in future releases (especially minor and hotfix releases). In rare
circumstances, if the major version number changes, a few specific classes might have a few
backwards incompatible changes, but those will be clearly documented in the upgrade recipe.

• XML configuration: The XML solver configuration is backwards compatible for all elements,
except for elements that require the use of non public API classes. The XML solver configuration

6

https://www.optaplanner.org/download/releaseNotes/
https://www.optaplanner.org/download/upgradeRecipe/

is defined by the classes in the package namespace org.optaplanner.core.config.

• Implementation classes: All classes in the package namespace org.optaplanner.core.impl are
not backwards compatible: they will change in future major or minor releases (but probably not
in hotfix releases). The upgrade recipe describes every such relevant change and on how to
quickly deal with it when upgrading to a newer version.

This documentation covers some impl classes too. Those documented impl classes
are reliable and safe to use (unless explicitly marked as experimental in this
documentation), but we’re just not entirely comfortable yet to write their
signatures in stone.

1.4.4. Community and support

For news and articles, check our blog, twitter (including Geoffrey’s twitter) and facebook.
If you’re happy with OptaPlanner, make us happy by posting a tweet or blog article about it.

Public questions are welcome on here. Bugs and feature requests are welcome in our issue tracker.
Pull requests are very welcome on GitHub and get priority treatment! By open sourcing your
improvements, you 'll benefit from our peer review and from our improvements made on top of
your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support
and consulting, take a look at these services.

1.4.5. Relationship with Drools and jBPM

OptaPlanner is part of the KIE group of projects. It releases regularly (often once or twice per
month) together with the Drools rule engine and the jBPM workflow engine.

7

https://www.optaplanner.org/download/upgradeRecipe/
https://www.optaplanner.org/blog/
https://twitter.com/OptaPlanner
https://twitter.com/GeoffreyDeSmet
https://www.facebook.com/OptaPlanner
https://www.optaplanner.org/community/getHelp.html
https://issues.redhat.com/browse/PLANNER
https://www.optaplanner.org/product/services.html
http://www.kiegroup.org
http://www.drools.org/
http://www.jbpm.org/

See the architecture overview to learn more about the optional integration with Drools.

1.5. Download and run the examples

1.5.1. Get the release ZIP and run the examples

To try it now:

1. Download a release zip of OptaPlanner from the OptaPlanner website and unzip it.

2. Open the directory examples and run the script.

Linux or Mac:

$ cd examples
$./runExamples.sh

Windows:

$ cd examples
$ runExamples.bat

8

https://www.optaplanner.org

The Examples GUI application will open. Pick an example to try it out:

9

OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a
mobile JVM as it does on the desktop.

1.5.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)

To run the examples in your favorite IDE:

• In IntelliJ IDEA, NetBeans or a non-vanilla Eclipse:

1. Open the file examples/sources/pom.xml as a new project, the maven integration will take
care of the rest.

2. Run the examples from the project.

• In a vanilla Eclipse (which lacks the M2Eclipse plugin):

1. Open a new project for the directory examples/sources .

2. Add all the jars to the classpath from the directory binaries and the directory
examples/binaries , except for the file examples/binaries/optaplanner-examples-*.jar .

3. Add the Java source directory src/main/java and the Java resources directory
src/main/resources .

4. Create a run configuration:

▪ Main class: org.optaplanner.examples.app.OptaPlannerExamplesApp

▪ VM parameters (optional): -Xmx512M -server

10

a. To run a specific example directly and skip the example selection window, run its App
class (for example CloudBalancingApp) instead of OptaPlannerExamplesApp.

5. Run that run configuration.

1.5.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr, or ANT

The OptaPlanner jars are available in the central maven repository (and the snapshots in the JBoss
maven repository).

If you use Maven, add a dependency to optaplanner-core in your pom.xml:

 <dependency>
 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-core</artifactId>
 <version>...</version>
 </dependency>

Or better yet, import the optaplanner-bom in dependencyManagement to avoid duplicating version
numbers when adding other optaplanner dependencies later on:

<project>
 ...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-bom</artifactId>
 <type>pom</type>
 <version>...</version>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-persistence-jpa</artifactId>
 </dependency>
 ...
 </dependencies>
</project>

If you use Gradle, add a dependency to optaplanner-core in your build.gradle:

11

http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~

dependencies {
 implementation 'org.optaplanner:optaplanner-core:#{site.pom.latestFinal.version}'
}

This is similar for Ivy and Buildr.

If you’re still using ANT (without Ivy), copy all the jars from the download zip’s binaries directory
in your classpath.

The download zip’s binaries directory contains far more jars then optaplanner-
core actually uses. It also contains the jars used by other modules, such as
optaplanner-benchmark.

Check the maven repository pom.xml files to determine the minimal dependency set
of optaplanner-core etc.

1.5.4. Build OptaPlanner from source

Prerequisites

• Set up Git.

• Authenticate on GitHub using either HTTPS or SSH.

◦ See GitHub for more information about setting up and authenticating Git.

• Set up Maven.

Build and run the examples from source.

1. Clone optaplanner from GitHub (or alternatively, download the zipball):

$ git clone https://github.com/kiegroup/optaplanner.git
...

2. Build it with Maven:

$ cd optaplanner
$ mvn clean install -DskipTests
...

The first time, Maven might take a long time, because it needs to download
jars.

3. Run the examples:

12

https://git-scm.com/
https://help.github.com/articles/set-up-git/
http://maven.apache.org/
https://github.com/kiegroup/optaplanner/zipball/master

$ cd optaplanner-examples
$ mvn exec:java
...

4. Edit the sources in your favorite IDE.

a. Optional: use a Java profiler.

13

Chapter 2. Getting started: a cloud balancing
demonstration

2.1. Cloud balancing tutorial

2.1.1. Problem description

Suppose your company owns a number of cloud computers and needs to run a number of
processes on those computers. Assign each process to a computer.

The following hard constraints must be fulfilled:

• Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

◦ CPU capacity: The CPU power of a computer must be at least the sum of the CPU power
required by the processes assigned to that computer.

◦ Memory capacity: The RAM memory of a computer must be at least the sum of the RAM
memory required by the processes assigned to that computer.

◦ Network capacity: The network bandwidth of a computer must be at least the sum of the
network bandwidth required by the processes assigned to that computer.

The following soft constraints should be optimized:

• Each computer that has one or more processes assigned, incurs a maintenance cost (which is
fixed per computer).

◦ Cost: Minimize the total maintenance cost.

This problem is a form of bin packing. The following is a simplified example, in which we assign
four processes to two computers with two constraints (CPU and RAM) with a simple algorithm:

14

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger
processes first and assigns the smaller processes to the remaining space. As you can see, it is not
optimal, as it does not leave enough room to assign the yellow process D.

OptaPlanner does find the more optimal solution by using additional, smarter algorithms. It also
scales: both in data (more processes, more computers) and constraints (more hardware
requirements, other constraints). So let’s see how OptaPlanner can be used in this scenario.

Here’s an executive summary of this example and an advanced implementation with more
constraints:

15

2.1.2. Problem size

Table 1. Cloud Balancing Problem Size

Problem Size Computers Processes Search Space

2computers-6processes 2 6 64

3computers-9processes 3 9 10^4

4computers-
012processes

4 12 10^7

100computers-
300processes

100 300 10^600

200computers-
600processes

200 600 10^1380

400computers-
1200processes

400 1200 10^3122

800computers-
2400processes

800 2400 10^6967

16

2.2. Using the domain model

2.2.1. Domain model design

Using a domain model helps determine which classes are planning entities and which of their
properties are planning variables. It also helps to simplify constraints, improve performance, and
increase flexibility for future needs.

To create a domain model, define all the objects that represent the input data for the problem. In
this simple example, the objects are processes and computers.

A separate object in the domain model must represent a full data set of problem, which contains
the input data as well as a solution. In this example, this object holds a list of computers and a list of
processes. Each process is assigned to a computer; the distribution of processes between computers
is the solution.

1. Draw a class diagram of your domain model.

2. Normalize it to remove duplicate data.

3. Write down some sample instances for each class.

◦ Computer: represents a computer with certain hardware and maintenance costs.

In this example, the sample instances for the Computer class are: cpuPower, memory,
networkBandwidth, cost.

◦ Process: represents a process with a demand. Needs to be assigned to a Computer by
OptaPlanner.

Sample instances for Process are: requiredCpuPower, requiredMemory, and
requiredNetworkBandwidth.

◦ CloudBalance: represents a problem. Contains every Computer and Process for a certain data
set.

For an object representing the full data set and solution, a sample instance holding the score
must be present. OptaPlanner can calculate and compare the scores for different solutions;
the solution with the highest score is the optimal solution. Therefore, the sample instance
for CloudBalance is score.

4. Determine which relationships (or fields) change during planning.

◦ Planning entity: The class (or classes) that OptaPlanner can change during solving. In this
example, it is the class Process, because OptaPlanner can assign processes to computers.

◦ Problem fact: A class representing input data that OptaPlanner can not change.

◦ Planning variable: The property (or properties) of a planning entity class that changes
during solving. In this example, it is the property computer on the class Process.

◦ Planning solution: The class that represents a solution to the problem. This class must
represent the full data set and contain all planning entities. In this example that is the class
CloudBalance.

17

In the UML class diagram below, the OptaPlanner concepts are already annotated:

2.2.2. Domain model implementation

2.2.2.1. The Computer class

The Computer class is a POJO (Plain Old Java Object). Usually, you will have more of this kind of
classes with input data.

Example 1. CloudComputer.java

public class CloudComputer ... {

 private int cpuPower;
 private int memory;
 private int networkBandwidth;
 private int cost;

 ... // getters
}

18

2.2.2.2. The Process class

The Process class is particularly important. It is the class that is modified during solving.

We need to tell OptaPlanner that it can change the property computer. To do this: . Annotate the class
with @PlanningEntity. . Annotate the getter getComputer() with @PlanningVariable.

Of course, the property computer needs a setter too, so OptaPlanner can change it during solving.

Example 2. CloudProcess.java

@PlanningEntity(...)
public class CloudProcess ... {

 private int requiredCpuPower;
 private int requiredMemory;
 private int requiredNetworkBandwidth;

 private CloudComputer computer;

 ... // getters

 @PlanningVariable(valueRangeProviderRefs = {"computerRange"})
 public CloudComputer getComputer() {
 return computer;
 }

 public void setComputer(CloudComputer computer) {
 computer = computer;
 }

 // **
 // Complex methods
 // **

 ...

}

• OptaPlanner needs to know which values it can choose from to assign to the property computer.
Those values are retrieved from the method CloudBalance.getComputerList() on the planning
solution, which returns a list of all computers in the current data set.

• The @PlanningVariable's valueRangeProviderRefs parameter on CloudProcess.getComputer() needs
to match with the @ValueRangeProvider's id on CloudBalance.getComputerList().

 Instead of getter annotations, it is also possible to use field annotations.

19

2.2.2.3. The CloudBalance class

The CloudBalance class has a @PlanningSolution annotation.

• It holds a list of all computers and a list of all processes.

• It represents both the planning problem and (if it is initialized) the planning solution.

• To save a solution, OptaPlanner initializes a new instance of the class.

1. The processList property holds a list of processes. OptaPlanner can change the processes,
allocating them to different computers. Therefore, a process is a planning entity and the list
of processes is a collection of planning entities. We annotate the getter getProcessList() with
@PlanningEntityCollectionProperty.

2. The computerList property holds a list of computers. OptaPlanner can not change the
computers. Therefore, a computer is a problem fact. Especially for score calculation with
Drools, the property computerList needs to be annotated with a
@ProblemFactCollectionProperty so that OptaPlanner can retrieve the list of computers
(problem facts) and make it available to the Drools engine.

3. The CloudBalance class also has a @PlanningScore annotated property score, which is the Score
of that solution in its current state. OptaPlanner automatically updates it when it calculates
a Score for a solution instance. Therefore, this property needs a setter.

20

Example 3. CloudBalance.java

@PlanningSolution
public class CloudBalance ... {

 private List<CloudComputer> computerList;

 private List<CloudProcess> processList;

 private HardSoftScore score;

 @ValueRangeProvider(id = "computerRange")
 @ProblemFactCollectionProperty
 public List<CloudComputer> getComputerList() {
 return computerList;
 }

 @PlanningEntityCollectionProperty
 public List<CloudProcess> getProcessList() {
 return processList;
 }

 @PlanningScore
 public HardSoftScore getScore() {
 return score;
 }

 public void setScore(HardSoftScore score) {
 this.score = score;
 }

 ...
}

2.3. Run the cloud balancing Hello World
1. Download and configure the examples in your preferred IDE.

2. Create a run configuration with the following main class:
org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWorld

By default, the Cloud Balancing Hello World is configured to run for 120 seconds.

It will execute the following code:

21

Example 4. CloudBalancingHelloWorld.java

public class CloudBalancingHelloWorld {

 public static void main(String[] args) {
 // Build the Solver
 SolverFactory<CloudBalance> solverFactory = SolverFactory
.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
 Solver<CloudBalance> solver = solverFactory.buildSolver();

 // Load a problem with 400 computers and 1200 processes
 CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator()
.createCloudBalance(400, 1200);

 // Solve the problem
 CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

 // Display the result
 System.out.println("\nSolved cloudBalance with 400 computers and 1200
processes:\n"
 + toDisplayString(solvedCloudBalance));
 }

 ...
}

The code example does the following:

1. Build the Solver based on a solver configuration (in this case an XML file,
cloudBalancingSolverConfig.xml, from the classpath).

Building the Solver is the most complicated part of this procedure. For more detail, see Solver
Configuration.

 SolverFactory<CloudBalance> solverFactory = SolverFactory
.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
 Solver<CloudBalance> solver = solverFactory.buildSolver();

2. Load the problem.

CloudBalancingGenerator generates a random problem: you will replace this with a class that
loads a real problem, for example from a database.

22

 CloudBalance unsolvedCloudBalance = new CloudBalancingGenerator()
.createCloudBalance(400, 1200);

3. Solve the problem.

 CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

4. Display the result.

 System.out.println("\nSolved cloudBalance with 400 computers and 1200
processes:\n"
 + toDisplayString(solvedCloudBalance));

2.4. Solver configuration
The solver configuration file determines how the solving process works; it is considered a part of
the code. The file is named cloudBalancingSolverConfig.xml.

Example 5. cloudBalancingSolverConfig.xml

<?xml version="1.0" encoding="UTF-8"?>
<solver>
 <!-- Domain model configuration -->
 <scanAnnotatedClasses/>

 <!-- Score configuration -->
 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.C
loudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
 <!--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.
drl</scoreDrl>-->
 </scoreDirectorFactory>

 <!-- Optimization algorithms configuration -->
 <termination>
 <secondsSpentLimit>30</secondsSpentLimit>
 </termination>
</solver>

This solver configuration consists of three parts:

1. Domain model configuration: What can OptaPlanner change?

23

We need to make OptaPlanner aware of our domain classes. In this configuration, it will
automatically scan all classes in your classpath (for a @PlanningEntity or @PlanningSolution
annotation):

 <scanAnnotatedClasses/>

2. Score configuration: How should OptaPlanner optimize the planning variables? What is our
goal?

Since we have hard and soft constraints, we use a HardSoftScore. But we need to tell
OptaPlanner how to calculate the score, depending on our business requirements. Further
down, we will look into two alternatives to calculate the score: using an easy Java
implementation, or using Drools DRL.

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.Cl
oudBalancingEasyScoreCalculator</easyScoreCalculatorClass>
 <!--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.d
rl</scoreDrl>-->
 </scoreDirectorFactory>

3. Optimization algorithms configuration: How should OptaPlanner optimize it?

In this case, we use the default optimization algorithms (because no explicit optimization
algorithms are configured) for 30 seconds:

 <termination>
 <secondsSpentLimit>30</secondsSpentLimit>
 </termination>

OptaPlanner should get a good result in seconds (and even in less than 15 milliseconds with
real-time planning), but the more time it has, the better the result will be. Advanced use cases
might use different termination criteria than a hard time limit.

The default algorithms will already easily surpass human planners and most in-house
implementations. Use the Benchmarker to power tweak to get even better results.

2.5. Score configuration
OptaPlanner searches for the solution with the highest Score. This example uses a HardSoftScore,
which means OptaPlanner looks for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

24

Of course, OptaPlanner needs to be told about these domain-specific score constraints. There are
several ways to implement such a score function:

• Easy Java

• Incremental Java

• Drools

2.5.1. Easy Java score configuration

One way to define a score function is to implement the interface EasyScoreCalculator in plain Java.

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.Cloud
BalancingEasyScoreCalculator</easyScoreCalculatorClass>
 </scoreDirectorFactory>

Just implement the calculateScore(Solution) method to return a HardSoftScore instance.

25

Example 6. CloudBalancingEasyScoreCalculator.java

public class CloudBalancingEasyScoreCalculator implements EasyScoreCalculator
<CloudBalance> {

 /**
 * A very simple implementation. The double loop can easily be removed by
using Maps as shown in
 * {@link
CloudBalancingMapBasedEasyScoreCalculator#calculateScore(CloudBalance)}.
 */
 public HardSoftScore calculateScore(CloudBalance cloudBalance) {
 int hardScore = 0;
 int softScore = 0;
 for (CloudComputer computer : cloudBalance.getComputerList()) {
 int cpuPowerUsage = 0;
 int memoryUsage = 0;
 int networkBandwidthUsage = 0;
 boolean used = false;

 // Calculate usage
 for (CloudProcess process : cloudBalance.getProcessList()) {
 if (computer.equals(process.getComputer())) {
 cpuPowerUsage += process.getRequiredCpuPower();
 memoryUsage += process.getRequiredMemory();
 networkBandwidthUsage += process.getRequiredNetworkBandwidth(
);
 used = true;
 }
 }

 // Hard constraints
 int cpuPowerAvailable = computer.getCpuPower() - cpuPowerUsage;
 if (cpuPowerAvailable < 0) {
 hardScore += cpuPowerAvailable;
 }
 int memoryAvailable = computer.getMemory() - memoryUsage;
 if (memoryAvailable < 0) {
 hardScore += memoryAvailable;
 }
 int networkBandwidthAvailable = computer.getNetworkBandwidth() -
networkBandwidthUsage;
 if (networkBandwidthAvailable < 0) {
 hardScore += networkBandwidthAvailable;
 }

 // Soft constraints
 if (used) {
 softScore -= computer.getCost();
 }

26

 }
 return HardSoftScore.valueOf(hardScore, softScore);
 }

}

Even if we optimize the code above to use Maps to iterate through the processList only once, it is still
slow because it does not do incremental score calculation. To fix that, either use incremental Java
score calculation or Drools score calculation.

2.5.2. Drools score configuration

Drools score calculation uses incremental calculation, where every score constraint is written as
one or more score rules.

Using the Drools rule engine for score calculation, allows you to integrate with other Drools
technologies, such as decision tables (XLS or web based), the KIE Workbench, …

Prerequisite To use the Drools rule engine as a score function, simply add a scoreDrl resource in
the classpath:

 <scoreDirectorFactory>

<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl<
/scoreDrl>
 </scoreDirectorFactory>

1. We want to make sure that all computers have enough CPU, RAM and network bandwidth to
support all their processes, so we make these hard constraints:

27

Example 7. cloudBalancingScoreRules.drl - Hard Constraints

...

import org.optaplanner.examples.cloudbalancing.domain.CloudBalance;
import org.optaplanner.examples.cloudbalancing.domain.CloudComputer;
import org.optaplanner.examples.cloudbalancing.domain.CloudProcess;

global HardSoftScoreHolder scoreHolder;

// ##
// Hard constraints
// ##

rule "requiredCpuPowerTotal"
 when
 $computer : CloudComputer($cpuPower : cpuPower)
 accumulate(
 CloudProcess(
 computer == $computer,
 $requiredCpuPower : requiredCpuPower);
 $requiredCpuPowerTotal : sum($requiredCpuPower);
 $requiredCpuPowerTotal > $cpuPower
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, $cpuPower -
$requiredCpuPowerTotal);
end

rule "requiredMemoryTotal"
 ...
end

rule "requiredNetworkBandwidthTotal"
 ...
end

2. If those constraints are met, we want to minimize the maintenance cost, so we add that as a soft
constraint:

28

Example 8. cloudBalancingScoreRules.drl - Soft Constraints

// ##
// Soft constraints
// ##

rule "computerCost"
 when
 $computer : CloudComputer($cost : cost)
 exists CloudProcess(computer == $computer)
 then
 scoreHolder.addSoftConstraintMatch(kcontext, - $cost);
end

2.6. Beyond this tutorial
Now that this simple example works, you can try going further. For example, you can enrich the
domain model and add extra constraints such as these:

• Each Process belongs to a Service. A computer might crash, so processes running the same
service must be assigned to different computers.

• Each Computer is located in a Building. A building might burn down, so processes of the same
services should (or must) be assigned to computers in different buildings.

29

Chapter 3. Use cases and examples

3.1. Examples overview
OptaPlanner has several examples. In this manual we explain mainly using the n queens example
and cloud balancing example. So it is advisable to read at least those sections.

Some of the examples solve problems that are presented in academic contests. The Contest column
in the following table lists the contests. It also identifies an example as being either realistic or
unrealistic for the purpose of a contest. A realistic contest is an official, independent contest:

• that clearly defines a real-world use case.

• with real-world constraints.

• with multiple, real-world datasets.

• that expects reproducible results within a specific time limit on specific hardware.

• that has had serious participation from the academic and/or enterprise Operations Research
community.

Realistic contests provide an objective comparison of OptaPlanner with competitive software and
academic research.

The source code of all these examples is available in the distribution zip under examples/sources
and also in git under optaplanner/optaplanner-examples.

Table 2. Examples overview

Example Domain Size Contest Special features
used

N queens • 1 entity class

◦ 1 variable

• Entity ⇐ 256

• Value ⇐ 256

• Search space
⇐ 10^616

• Pointless
(cheatable)

None

Cloud balancing • 1 entity class

◦ 1 variable

• Entity ⇐ 2400

• Value ⇐ 800

• Search space
⇐ 10^6967

• No

• Defined by us

• Real-time
planning

Traveling
salesman

• 1 entity class

◦ 1 chained
variable

• Entity ⇐ 980

• Value ⇐ 980

• Search space
⇐ 10^2504

• Unrealistic

• TSP web

• Real-time
planning

30

https://en.wikipedia.org/wiki/Eight_queens_puzzle#Explicit_solutions
http://www.math.uwaterloo.ca/tsp/

Example Domain Size Contest Special features
used

Dinner party • 1 entity class

◦ 1 variable

• Entity ⇐ 144

• Value ⇐ 72

• Search space
⇐ 10^310

• Unrealistic • Decision Table
spreadsheet
(XLS) for score
constraints

Tennis club
scheduling

• 1 entity class

◦ 1 variable

• Entity ⇐ 72

• Value ⇐ 7

• Search space
⇐ 10^60

• No

• Defined by us

• Fairness score
constraints

• Immovable
entities

Meeting
scheduling

• 1 entity class

◦ 2 variables

• Entity ⇐ 10

• Value ⇐ 320
and ⇐ 5

• Search space
⇐ 10^320

• No

• Defined by us

• TimeGrain
pattern

Course
timetabling

• 1 entity class

◦ 2 variables

• Entity ⇐ 434

• Value ⇐ 25
and ⇐ 20

• Search space
⇐ 10^1171

• Realistic

• ITC 2007 track
3

• Immovable
entities

Machine
reassignment

• 1 entity class

◦ 1 variable

• Entity ⇐ 50000

• Value ⇐ 5000

• Search space
⇐ 10^184948

• Nearly
realistic

• ROADEF 2012

• Real-time
planning

Vehicle routing • 1 entity class

◦ 1 chained
variable

• 1 shadow
entity class

◦ 1
automatic
shadow
variable

• Entity ⇐ 2740

• Value ⇐ 2795

• Search space
⇐ 10^8380

• Unrealistic

• VRP web

• Shadow
variable

• Real-time
planning

• Nearby
selection

• Real road
distances

31

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://challenge.roadef.org/2012/en/
http://neo.lcc.uma.es/vrp/

Example Domain Size Contest Special features
used

Vehicle routing
with time
windows

• All of Vehicle
routing

• 1 shadow
variable

• Entity ⇐ 2740

• Value ⇐ 2795

• Search space
⇐ 10^8380

• Unrealistic

• VRP web

• All of Vehicle
routing

• Custom
VariableListen
er

Project job
scheduling

• 1 entity class

◦ 2 variables

◦ 1 shadow
variable

• Entity ⇐ 640

• Value ⇐ ? and
⇐ ?

• Search space
⇐ ?

• Nearly
realistic

• MISTA 2013

• Bendable
score

• Custom
VariableListen
er

• ValueRangeFa
ctory

Hospital bed
planning

• 1 entity class

◦ 1 nullable
variable

• Entity ⇐ 2750

• Value ⇐ 471

• Search space
⇐ 10^6851

• Unrealistic

• Kaho PAS

• Overconstrain
ed planning

Task assigning • 1 entity class

◦ 1 chained
variable

◦ 1 shadow
variable

• 1 shadow
entity class

◦ 1
automatic
shadow
variable

• Entity ⇐ 500

• Value ⇐ 520

• Search space
⇐ 10^1168

• No

• Defined by us

• Bendable
score

• Chained
through time
pattern

• Custom
VariableListen
er

• Continuous
planning

• Real-time
planning

Exam timetabling • 2 entity classes
(same
hierarchy)

◦ 2 variables

• Entity ⇐ 1096

• Value ⇐ 80
and ⇐ 49

• Search space
⇐ 10^3374

• Realistic

• ITC 2007 track
1

• Custom
VariableListen
er

32

http://neo.lcc.uma.es/vrp/
http://gent.cs.kuleuven.be/mista2013challenge/
https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Example Domain Size Contest Special features
used

Nurse rostering • 1 entity class

◦ 1 variable

• Entity ⇐ 752

• Value ⇐ 50

• Search space
⇐ 10^1277

• Realistic

• INRC 2010

• Continuous
planning

• Real-time
planning

Traveling
tournament

• 1 entity class

◦ 1 variable

• Entity ⇐ 1560

• Value ⇐ 78

• Search space
⇐ 10^2301

• Unrealistic

• TTP

• Custom
MoveListFacto
ry

Cheap time
scheduling

• 1 entity class

◦ 2 variables

• Entity ⇐ 500

• Value ⇐ 100
and ⇐ 288

• Search space
⇐ 10^20078

• Nearly
realistic

• ICON
challenge 2014

• Field
annotations

• ValueRangeFa
ctory

Investment • 1 entity class

• 1 variable

• Entity ⇐ 11

• Value = 1000

• Search space
⇐ 10^4

• No

• Defined by us

• ValueRangeFa
ctory

Conference
scheduling

• 1 entity class

◦ 2 variables

• Entity ⇐ 216

• Value ⇐ 18
and ⇐ 20

• Search space
⇐ 10^552

• No

• Defined by us

Rock tour • 1 entity class

◦ 1 chained
variable

◦ 4 shadow
variables

• 1 shadow
entity class

◦ 1
automatic
shadow
variable

• Entity ⇐ 47

• Value ⇐ 48

• Search space
⇐ 10^59

• No

• Defined by us

33

http://www.kuleuven-kortrijk.be/nrpcompetition
http://mat.tepper.cmu.edu/TOURN/

Example Domain Size Contest Special features
used

Flight crew
scheduling

• 1 entity class

◦ 1 variable

• 1 shadow
entity class

◦ 1
automatic
shadow
variable

• Entity ⇐ 4375

• Value ⇐ 750

• Search space
⇐ 10^12578

• No

• Defined by us

3.2. N queens

3.2.1. Problem description

Place n queens on a n sized chessboard so that no two queens can attack each other. The most
common n queens puzzle is the eight queens puzzle, with n = 8:

Constraints:

• Use a chessboard of n columns and n rows.

34

• Place n queens on the chessboard.

• No two queens can attack each other. A queen can attack any other queen on the same
horizontal, vertical or diagonal line.

This documentation heavily uses the four queens puzzle as the primary example.

A proposed solution could be:

Figure 1. A Wrong Solution for the Four Queens Puzzle

The above solution is wrong because queens A1 and B0 can attack each other (so can queens B0 and
D0). Removing queen B0 would respect the "no two queens can attack each other" constraint, but
would break the "place n queens" constraint.

Below is a correct solution:

Figure 2. A Correct Solution for the Four Queens Puzzle

All the constraints have been met, so the solution is correct.

Note that most n queens puzzles have multiple correct solutions. We will focus on finding a single
correct solution for a given n, not on finding the number of possible correct solutions for a given n.

3.2.2. Problem size

4queens has 4 queens with a search space of 256.
8queens has 8 queens with a search space of 10^7.
16queens has 16 queens with a search space of 10^19.
32queens has 32 queens with a search space of 10^48.
64queens has 64 queens with a search space of 10^115.
256queens has 256 queens with a search space of 10^616.

The implementation of the n queens example has not been optimized because it functions as a

35

beginner example. Nevertheless, it can easily handle 64 queens. With a few changes it has been
shown to easily handle 5000 queens and more.

3.2.3. Domain model

This example uses the domain model to solve the four queens problem.

1. Creating a Domain Model A good domain model will make it easier to understand and solve
your planning problem.

This is the domain model for the n queens example:

public class Column {

 private int index;

 // ... getters and setters
}

public class Row {

 private int index;

 // ... getters and setters
}

public class Queen {

 private Column column;
 private Row row;

 public int getAscendingDiagonalIndex() {...}
 public int getDescendingDiagonalIndex() {...}

 // ... getters and setters
}

2. Calculating the Search Space.

A Queen instance has a Column (for example: 0 is column A, 1 is column B, …) and a Row (its row,
for example: 0 is row 0, 1 is row 1, …).

The ascending diagonal line and the descending diagonal line can be calculated based on the
column and the row.

The column and row indexes start from the upper left corner of the chessboard.

36

public class NQueens {

 private int n;
 private List<Column> columnList;
 private List<Row> rowList;

 private List<Queen> queenList;

 private SimpleScore score;

 // ... getters and setters
}

3. Finding the Solution

A single NQueens instance contains a list of all Queen instances. It is the solution implementation
which is supplied to, solved by, and retrieved from the Solver.

Notice that in the four queens example, NQueens’s getN() method will always return four.

Table 3. A Solution for Four Queens Shown in the Domain Model

A solution Queen column
Index

rowInd
ex

ascend
ingDia
gonalI
ndex
(colum
nIndex
+
rowInd
ex)

descen
dingDi
agonalI
ndex
(colum
nIndex
-
rowInd
ex)

A1 0 1 1 (**) -1

B0 1 0 (*) 1 (**) 1

C2 2 2 4 0

D0 3 0 (*) 3 3

When two queens share the same column, row or diagonal line, such as (*) and (**), they can attack
each other.

3.3. Cloud balancing
This example is explained in a tutorial.

37

3.4. Traveling salesman (TSP - traveling salesman
problem)

3.4.1. Problem description

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia. It is one of the most intensively studied problems in
computational mathematics. Yet, in the real world, it is often only part of a planning problem, along
with other constraints, such as employee shift rostering constraints.

3.4.2. Problem size

dj38 has 38 cities with a search space of 10^43.
europe40 has 40 cities with a search space of 10^46.
st70 has 70 cities with a search space of 10^98.
pcb442 has 442 cities with a search space of 10^976.
lu980 has 980 cities with a search space of 10^2504.

3.4.3. Problem difficulty

Despite TSP’s simple definition, the problem is surprisingly hard to solve. Because it is an NP-hard
problem (like most planning problems), the optimal solution for a specific problem dataset can
change a lot when that problem dataset is slightly altered:

38

https://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.math.uwaterloo.ca/tsp/

3.5. Dinner party

3.5.1. Problem description

Miss Manners is throwing another dinner party.

• This time she invited 144 guests and prepared 12 round tables with 12 seats each.

• Every guest should sit next to someone (left and right) of the opposite gender.

• And that neighbour should have at least one hobby in common with the guest.

• At every table, there should be two politicians, two doctors, two socialites, two coaches, two
teachers and two programmers.

• And the two politicians, two doctors, two coaches and two programmers should not be the same
kind at a table.

Drools Expert also has the normal Miss Manners example (which is much smaller) and employs an
exhaustive heuristic to solve it. OptaPlanner’s implementation is far more scalable because it uses
heuristics to find the best solution and Drools Expert to calculate the score of each solution.

3.5.2. Problem size

39

wedding01 has 18 jobs, 144 guests, 288 hobby practicians, 12 tables and 144 seats with
a search space of 10^310.

3.6. Tennis club scheduling

3.6.1. Problem description

Every week the tennis club has four teams playing round robin against each other. Assign those
four spots to the teams fairly.

Hard constraints:

• Conflict: A team can only play once per day.

• Unavailability: Some teams are unavailable on some dates.

Medium constraints:

• Fair assignment: All teams should play an (almost) equal number of times.

Soft constraints:

• Evenly confrontation: Each team should play against every other team an equal number of
times.

3.6.2. Problem size

munich-7teams has 7 teams, 18 days, 12 unavailabilityPenalties and 72 teamAssignments
with a search space of 10^60.

3.6.3. Domain model

40

3.7. Meeting scheduling

3.7.1. Problem description

Assign each meeting to a starting time and a room. Meetings have different durations.

Hard constraints:

• Room conflict: two meetings must not use the same room at the same time.

• Required attendance: A person cannot have two required meetings at the same time.

• Required room capacity: A meeting must not be in a room that doesn’t fit all of the meeting’s
attendees.

• Start and end on same day: A meeting shouldn’t be scheduled over multiple days.

Medium constraints:

• Preferred attendance: A person cannot have two preferred meetings at the same time, nor a
preferred and a required meeting at the same time.

Soft constraints:

• Sooner rather than later: Schedule all meetings as soon as possible.

41

• A break between meetings: Any two meetings should have at least one time grain break
between them.

• Overlapping meetings: To minimize the number of meetings in parallel so people don’t have to
choose one meeting over the other.

• Assign larger rooms first: If a larger room is available any meeting should be assigned to that
room in order to accommodate as many people as possible even if they haven’t signed up to that
meeting.

• Room stability: If a person has two consecutive meetings with two or less time grains break
between them they better be in the same room.

3.7.2. Problem size

50meetings-160timegrains-5rooms has 50 meetings, 160 timeGrains and 5 rooms with a
search space of 10^145.
100meetings-320timegrains-5rooms has 100 meetings, 320 timeGrains and 5 rooms with a
search space of 10^320.
200meetings-640timegrains-5rooms has 200 meetings, 640 timeGrains and 5 rooms with a
search space of 10^701.
400meetings-1280timegrains-5rooms has 400 meetings, 1280 timeGrains and 5 rooms with a
search space of 10^1522.
800meetings-2560timegrains-5rooms has 800 meetings, 2560 timeGrains and 5 rooms with a
search space of 10^3285.

3.8. Course timetabling (ITC 2007 Track 3 - Curriculum
Course Scheduling)

3.8.1. Problem description

Schedule each lecture into a timeslot and into a room.

Hard constraints:

• Teacher conflict: A teacher must not have two lectures in the same period.

• Curriculum conflict: A curriculum must not have two lectures in the same period.

• Room occupancy: two lectures must not be in the same room in the same period.

• Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

Soft constraints:

• Room capacity: A room’s capacity should not be less than the number of students in its lecture.

• Minimum working days: Lectures of the same course should be spread out into a minimum
number of days.

• Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to each

42

other (so in consecutive periods).

• Room stability: Lectures of the same course should be assigned to the same room.

The problem is defined by the International Timetabling Competition 2007 track 3.

3.8.2. Problem size

comp01 has 24 teachers, 14 curricula, 30 courses, 160 lectures, 30 periods, 6 rooms
and 53 unavailable period constraints with a search space of 10^360.
comp02 has 71 teachers, 70 curricula, 82 courses, 283 lectures, 25 periods, 16 rooms
and 513 unavailable period constraints with a search space of 10^736.
comp03 has 61 teachers, 68 curricula, 72 courses, 251 lectures, 25 periods, 16 rooms
and 382 unavailable period constraints with a search space of 10^653.
comp04 has 70 teachers, 57 curricula, 79 courses, 286 lectures, 25 periods, 18 rooms
and 396 unavailable period constraints with a search space of 10^758.
comp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9 rooms
and 771 unavailable period constraints with a search space of 10^381.
comp06 has 87 teachers, 70 curricula, 108 courses, 361 lectures, 25 periods, 18 rooms
and 632 unavailable period constraints with a search space of 10^957.
comp07 has 99 teachers, 77 curricula, 131 courses, 434 lectures, 25 periods, 20 rooms
and 667 unavailable period constraints with a search space of 10^1171.
comp08 has 76 teachers, 61 curricula, 86 courses, 324 lectures, 25 periods, 18 rooms
and 478 unavailable period constraints with a search space of 10^859.
comp09 has 68 teachers, 75 curricula, 76 courses, 279 lectures, 25 periods, 18 rooms
and 405 unavailable period constraints with a search space of 10^740.
comp10 has 88 teachers, 67 curricula, 115 courses, 370 lectures, 25 periods, 18 rooms
and 694 unavailable period constraints with a search space of 10^981.
comp11 has 24 teachers, 13 curricula, 30 courses, 162 lectures, 45 periods, 5 rooms
and 94 unavailable period constraints with a search space of 10^381.
comp12 has 74 teachers, 150 curricula, 88 courses, 218 lectures, 36 periods, 11 rooms
and 1368 unavailable period constraints with a search space of 10^566.
comp13 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19 rooms
and 468 unavailable period constraints with a search space of 10^824.
comp14 has 68 teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17 rooms
and 486 unavailable period constraints with a search space of 10^722.

3.8.3. Domain model

43

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

3.9. Machine reassignment (Google ROADEF 2012)

3.9.1. Problem description

Assign each process to a machine. All processes already have an original (unoptimized) assignment.
Each process requires an amount of each resource (such as CPU, RAM, …). This is a more complex
version of the Cloud Balancing example.

Hard constraints:

• Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

• Conflict: Processes of the same service must run on distinct machines.

• Spread: Processes of the same service must be spread out across locations.

• Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

• Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

• Load: The safety capacity for each resource for each machine should not be exceeded.

44

• Balance: Leave room for future assignments by balancing the available resources on each
machine.

• Process move cost: A process has a move cost.

• Service move cost: A service has a move cost.

• Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012.

3.9.2. Value proposition

45

http://challenge.roadef.org/2012/en/

3.9.3. Problem size

46

model_a1_1 has 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79
services, 100 processes and 1 balancePenalties with a search space of 10^60.
model_a1_2 has 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980
services, 1000 processes and 0 balancePenalties with a search space of 10^2000.
model_a1_3 has 3 resources, 5 neighborhoods, 25 locations, 100 machines, 216
services, 1000 processes and 0 balancePenalties with a search space of 10^2000.
model_a1_4 has 3 resources, 50 neighborhoods, 50 locations, 50 machines, 142
services, 1000 processes and 1 balancePenalties with a search space of 10^1698.
model_a1_5 has 4 resources, 2 neighborhoods, 4 locations, 12 machines, 981
services, 1000 processes and 1 balancePenalties with a search space of 10^1079.
model_a2_1 has 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000
services, 1000 processes and 0 balancePenalties with a search space of 10^2000.
model_a2_2 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 170
services, 1000 processes and 0 balancePenalties with a search space of 10^2000.
model_a2_3 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 129
services, 1000 processes and 0 balancePenalties with a search space of 10^2000.
model_a2_4 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 180
services, 1000 processes and 1 balancePenalties with a search space of 10^1698.
model_a2_5 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 153
services, 1000 processes and 0 balancePenalties with a search space of 10^1698.
model_b_1 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2512
services, 5000 processes and 0 balancePenalties with a search space of 10^10000.
model_b_2 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2462
services, 5000 processes and 1 balancePenalties with a search space of 10^10000.
model_b_3 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 15025
services, 20000 processes and 0 balancePenalties with a search space of 10^40000.
model_b_4 has 6 resources, 5 neighborhoods, 50 locations, 500 machines, 1732
services, 20000 processes and 1 balancePenalties with a search space of 10^53979.
model_b_5 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 35082
services, 40000 processes and 0 balancePenalties with a search space of 10^80000.
model_b_6 has 6 resources, 5 neighborhoods, 50 locations, 200 machines, 14680
services, 40000 processes and 1 balancePenalties with a search space of 10^92041.
model_b_7 has 6 resources, 5 neighborhoods, 50 locations, 4000 machines, 15050
services, 40000 processes and 1 balancePenalties with a search space of 10^144082.
model_b_8 has 3 resources, 5 neighborhoods, 10 locations, 100 machines, 45030
services, 50000 processes and 0 balancePenalties with a search space of 10^100000.
model_b_9 has 3 resources, 5 neighborhoods, 100 locations, 1000 machines, 4609
services, 50000 processes and 1 balancePenalties with a search space of 10^150000.
model_b_10 has 3 resources, 5 neighborhoods, 100 locations, 5000 machines, 4896
services, 50000 processes and 1 balancePenalties with a search space of 10^184948.

3.9.4. Domain model

47

3.10. Vehicle routing

3.10.1. Problem description

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each
vehicle can service multiple customers, but it has a limited capacity.

48

Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).

Hard constraints:

• Vehicle capacity: a vehicle cannot carry more items then its capacity.

• Time windows (only in CVRPTW):

◦ Travel time: Traveling from one location to another takes time.

◦ Customer service duration: a vehicle must stay at the customer for the length of the service
duration.

◦ Customer ready time: a vehicle may arrive before the customer’s ready time, but it must
wait until the ready time before servicing.

◦ Customer due time: a vehicle must arrive on time, before the customer’s due time.

Soft constraints:

• Total distance: minimize the total distance driven (fuel consumption) of all vehicles.

The capacitated vehicle routing problem (CVRP) and its timewindowed variant (CVRPTW) are

49

defined by the VRP web.

3.10.2. Value proposition

3.10.3. Problem size

CVRP instances (without time windows):

belgium-n50-k10 has 1 depots, 10 vehicles and 49 customers with a
search space of 10^74.
belgium-n100-k10 has 1 depots, 10 vehicles and 99 customers with a
search space of 10^170.
belgium-n500-k20 has 1 depots, 20 vehicles and 499 customers with a
search space of 10^1168.
belgium-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a
search space of 10^2607.
belgium-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a
search space of 10^8380.
belgium-road-km-n50-k10 has 1 depots, 10 vehicles and 49 customers with a
search space of 10^74.
belgium-road-km-n100-k10 has 1 depots, 10 vehicles and 99 customers with a
search space of 10^170.
belgium-road-km-n500-k20 has 1 depots, 20 vehicles and 499 customers with a
search space of 10^1168.

50

http://neo.lcc.uma.es/vrp/

belgium-road-km-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a
search space of 10^2607.
belgium-road-km-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a
search space of 10^8380.
belgium-road-time-n50-k10 has 1 depots, 10 vehicles and 49 customers with a
search space of 10^74.
belgium-road-time-n100-k10 has 1 depots, 10 vehicles and 99 customers with a
search space of 10^170.
belgium-road-time-n500-k20 has 1 depots, 20 vehicles and 499 customers with a
search space of 10^1168.
belgium-road-time-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a
search space of 10^2607.
belgium-road-time-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a
search space of 10^8380.
belgium-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a
search space of 10^74.
belgium-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a
search space of 10^170.
belgium-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a
search space of 10^1168.
belgium-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a
search space of 10^2607.
belgium-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a
search space of 10^8380.

A-n32-k5 has 1 depots, 5 vehicles and 31 customers with a search space of 10^40.
A-n33-k5 has 1 depots, 5 vehicles and 32 customers with a search space of 10^41.
A-n33-k6 has 1 depots, 6 vehicles and 32 customers with a search space of 10^42.
A-n34-k5 has 1 depots, 5 vehicles and 33 customers with a search space of 10^43.
A-n36-k5 has 1 depots, 5 vehicles and 35 customers with a search space of 10^46.
A-n37-k5 has 1 depots, 5 vehicles and 36 customers with a search space of 10^48.
A-n37-k6 has 1 depots, 6 vehicles and 36 customers with a search space of 10^49.
A-n38-k5 has 1 depots, 5 vehicles and 37 customers with a search space of 10^49.
A-n39-k5 has 1 depots, 5 vehicles and 38 customers with a search space of 10^51.
A-n39-k6 has 1 depots, 6 vehicles and 38 customers with a search space of 10^52.
A-n44-k7 has 1 depots, 7 vehicles and 43 customers with a search space of 10^61.
A-n45-k6 has 1 depots, 6 vehicles and 44 customers with a search space of 10^62.
A-n45-k7 has 1 depots, 7 vehicles and 44 customers with a search space of 10^63.
A-n46-k7 has 1 depots, 7 vehicles and 45 customers with a search space of 10^65.
A-n48-k7 has 1 depots, 7 vehicles and 47 customers with a search space of 10^68.
A-n53-k7 has 1 depots, 7 vehicles and 52 customers with a search space of 10^77.
A-n54-k7 has 1 depots, 7 vehicles and 53 customers with a search space of 10^79.
A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a search space of 10^82.
A-n60-k9 has 1 depots, 9 vehicles and 59 customers with a search space of 10^91.
A-n61-k9 has 1 depots, 9 vehicles and 60 customers with a search space of 10^93.
A-n62-k8 has 1 depots, 8 vehicles and 61 customers with a search space of 10^94.
A-n63-k9 has 1 depots, 9 vehicles and 62 customers with a search space of 10^97.
A-n63-k10 has 1 depots, 10 vehicles and 62 customers with a search space of 10^98.
A-n64-k9 has 1 depots, 9 vehicles and 63 customers with a search space of 10^99.
A-n65-k9 has 1 depots, 9 vehicles and 64 customers with a search space of 10^101.
A-n69-k9 has 1 depots, 9 vehicles and 68 customers with a search space of 10^108.

51

A-n80-k10 has 1 depots, 10 vehicles and 79 customers with a search space of 10^130.
F-n45-k4 has 1 depots, 4 vehicles and 44 customers with a search space of 10^60.
F-n72-k4 has 1 depots, 4 vehicles and 71 customers with a search space of 10^108.
F-n135-k7 has 1 depots, 7 vehicles and 134 customers with a search space of 10^240.

CVRPTW instances (with time windows):

belgium-tw-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search
space of 10^74.
belgium-tw-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search
space of 10^170.
belgium-tw-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search
space of 10^1168.
belgium-tw-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search
space of 10^2607.
belgium-tw-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search
space of 10^8380.
belgium-tw-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search
space of 10^74.
belgium-tw-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search
space of 10^170.
belgium-tw-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search
space of 10^1168.
belgium-tw-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search
space of 10^2607.
belgium-tw-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search
space of 10^8380.

Solomon_025_C101 has 1 depots, 25 vehicles and 25 customers with a search
space of 10^40.
Solomon_025_C201 has 1 depots, 25 vehicles and 25 customers with a search
space of 10^40.
Solomon_025_R101 has 1 depots, 25 vehicles and 25 customers with a search
space of 10^40.
Solomon_025_R201 has 1 depots, 25 vehicles and 25 customers with a search
space of 10^40.
Solomon_025_RC101 has 1 depots, 25 vehicles and 25 customers with a search
space of 10^40.
Solomon_025_RC201 has 1 depots, 25 vehicles and 25 customers with a search
space of 10^40.
Solomon_100_C101 has 1 depots, 25 vehicles and 100 customers with a search
space of 10^185.
Solomon_100_C201 has 1 depots, 25 vehicles and 100 customers with a search
space of 10^185.
Solomon_100_R101 has 1 depots, 25 vehicles and 100 customers with a search
space of 10^185.
Solomon_100_R201 has 1 depots, 25 vehicles and 100 customers with a search
space of 10^185.
Solomon_100_RC101 has 1 depots, 25 vehicles and 100 customers with a search
space of 10^185.

52

Solomon_100_RC201 has 1 depots, 25 vehicles and 100 customers with a search
space of 10^185.
Homberger_0200_C1_2_1 has 1 depots, 50 vehicles and 200 customers with a search
space of 10^429.
Homberger_0200_C2_2_1 has 1 depots, 50 vehicles and 200 customers with a search
space of 10^429.
Homberger_0200_R1_2_1 has 1 depots, 50 vehicles and 200 customers with a search
space of 10^429.
Homberger_0200_R2_2_1 has 1 depots, 50 vehicles and 200 customers with a search
space of 10^429.
Homberger_0200_RC1_2_1 has 1 depots, 50 vehicles and 200 customers with a search
space of 10^429.
Homberger_0200_RC2_2_1 has 1 depots, 50 vehicles and 200 customers with a search
space of 10^429.
Homberger_0400_C1_4_1 has 1 depots, 100 vehicles and 400 customers with a search
space of 10^978.
Homberger_0400_C2_4_1 has 1 depots, 100 vehicles and 400 customers with a search
space of 10^978.
Homberger_0400_R1_4_1 has 1 depots, 100 vehicles and 400 customers with a search
space of 10^978.
Homberger_0400_R2_4_1 has 1 depots, 100 vehicles and 400 customers with a search
space of 10^978.
Homberger_0400_RC1_4_1 has 1 depots, 100 vehicles and 400 customers with a search
space of 10^978.
Homberger_0400_RC2_4_1 has 1 depots, 100 vehicles and 400 customers with a search
space of 10^978.
Homberger_0600_C1_6_1 has 1 depots, 150 vehicles and 600 customers with a search
space of 10^1571.
Homberger_0600_C2_6_1 has 1 depots, 150 vehicles and 600 customers with a search
space of 10^1571.
Homberger_0600_R1_6_1 has 1 depots, 150 vehicles and 600 customers with a search
space of 10^1571.
Homberger_0600_R2_6_1 has 1 depots, 150 vehicles and 600 customers with a search
space of 10^1571.
Homberger_0600_RC1_6_1 has 1 depots, 150 vehicles and 600 customers with a search
space of 10^1571.
Homberger_0600_RC2_6_1 has 1 depots, 150 vehicles and 600 customers with a search
space of 10^1571.
Homberger_0800_C1_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10^2195.
Homberger_0800_C2_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10^2195.
Homberger_0800_R1_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10^2195.
Homberger_0800_R2_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10^2195.
Homberger_0800_RC1_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10^2195.
Homberger_0800_RC2_8_1 has 1 depots, 200 vehicles and 800 customers with a search
space of 10^2195.
Homberger_1000_C110_1 has 1 depots, 250 vehicles and 1000 customers with a search

53

space of 10^2840.
Homberger_1000_C210_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10^2840.
Homberger_1000_R110_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10^2840.
Homberger_1000_R210_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10^2840.
Homberger_1000_RC110_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10^2840.
Homberger_1000_RC210_1 has 1 depots, 250 vehicles and 1000 customers with a search
space of 10^2840.

3.10.4. Domain model

The vehicle routing with timewindows domain model makes heavily use of shadow variables. This
allows it to express its constraints more naturally, because properties such as arrivalTime and
departureTime, are directly available on the domain model.

3.10.4.1. Road distances instead of air distances

In the real world, vehicles cannot follow a straight line from location to location: they have to use
roads and highways. From a business point of view, this matters a lot:

54

For the optimization algorithm, this does not matter much, as long as the distance between two
points can be looked up (and are preferably precalculated). The road cost does not even need to be
a distance, it can also be travel time, fuel cost, or a weighted function of those. There are several
technologies available to precalculate road costs, such as GraphHopper (embeddable, offline Java
engine), Open MapQuest (web service) and Google Maps Client API (web service).

55

https://graphhopper.com/
http://open.mapquestapi.com/directions/#matrix
https://developers.google.com/maps/documentation/webservices/client-library

There are also several technologies to render it, such as Leaflet and Google Maps for developers.
The OptaWeb Vehicle Routing project has an example which demonstrates such rendering:

56

http://leafletjs.com
https://developers.google.com/maps/
https://github.com/kiegroup/optaweb-vehicle-routing

It is even possible to render the actual road routes with GraphHopper or Google Map Directions,
but because of route overlaps on highways, it can become harder to see the standstill order:

57

Take special care that the road costs between two points use the same optimization criteria as the
one used in OptaPlanner. For example, GraphHopper etc will by default return the fastest route, not
the shortest route. Don’t use the km (or miles) distances of the fastest GPS routes to optimize the
shortest trip in OptaPlanner: this leads to a suboptimal solution as shown below:

58

Contrary to popular belief, most users do not want the shortest route: they want the fastest route
instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the
real world, the fastest and shortest route are rarely the same.

3.11. Project job scheduling

3.11.1. Problem description

Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a
project. A job can be executed in different ways: each way is an execution mode that implies a
different duration but also different resource usages. This is a form of flexible job shop scheduling.

59

Hard constraints:

• Job precedence: a job can only start when all its predecessor jobs are finished.

• Resource capacity: do not use more resources than available.

◦ Resources are local (shared between jobs of the same project) or global (shared between all
jobs)

◦ Resources are renewable (capacity available per day) or nonrenewable (capacity available
for all days)

Medium constraints:

• Total project delay: minimize the duration (makespan) of each project.

Soft constraints:

• Total makespan: minimize the duration of the whole multi-project schedule.

The problem is defined by the MISTA 2013 challenge.

3.11.2. Problem size

60

http://gent.cs.kuleuven.be/mista2013challenge/

Schedule A-1 has 2 projects, 24 jobs, 64 execution modes, 7 resources and 150
resource requirements.
Schedule A-2 has 2 projects, 44 jobs, 124 execution modes, 7 resources and 420
resource requirements.
Schedule A-3 has 2 projects, 64 jobs, 184 execution modes, 7 resources and 630
resource requirements.
Schedule A-4 has 5 projects, 60 jobs, 160 execution modes, 16 resources and 390
resource requirements.
Schedule A-5 has 5 projects, 110 jobs, 310 execution modes, 16 resources and 900
resource requirements.
Schedule A-6 has 5 projects, 160 jobs, 460 execution modes, 16 resources and 1440
resource requirements.
Schedule A-7 has 10 projects, 120 jobs, 320 execution modes, 22 resources and 900
resource requirements.
Schedule A-8 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1860
resource requirements.
Schedule A-9 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2880
resource requirements.
Schedule A-10 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2970
resource requirements.
Schedule B-1 has 10 projects, 120 jobs, 320 execution modes, 31 resources and 900
resource requirements.
Schedule B-2 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1740
resource requirements.
Schedule B-3 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 3060
resource requirements.
Schedule B-4 has 15 projects, 180 jobs, 480 execution modes, 46 resources and 1530
resource requirements.
Schedule B-5 has 15 projects, 330 jobs, 930 execution modes, 46 resources and 2760
resource requirements.
Schedule B-6 has 15 projects, 480 jobs, 1380 execution modes, 46 resources and 4500
resource requirements.
Schedule B-7 has 20 projects, 240 jobs, 640 execution modes, 61 resources and 1710
resource requirements.
Schedule B-8 has 20 projects, 440 jobs, 1240 execution modes, 42 resources and 3180
resource requirements.
Schedule B-9 has 20 projects, 640 jobs, 1840 execution modes, 61 resources and 5940
resource requirements.
Schedule B-10 has 20 projects, 460 jobs, 1300 execution modes, 42 resources and 4260
resource requirements.

3.12. Hospital bed planning (PAS - Patient Admission
Scheduling)

3.12.1. Problem description

Assign each patient (that will come to the hospital) into a bed for each night that the patient will
stay in the hospital. Each bed belongs to a room and each room belongs to a department. The

61

arrival and departure dates of the patients is fixed: only a bed needs to be assigned for each night.

This problem features overconstrained datasets.

Hard constraints:

• Two patients must not be assigned to the same bed in the same night. Weight: -1000hard *
conflictNightCount.

• A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all. Weight: -50hard * nightCount.

• A department can have a minimum or maximum age. Weight: -100hard * nightCount.

• A patient can require a room with specific equipment(s). Weight: -50hard * nightCount.

Medium constraints:

• Assign every patient to a bed, unless the dataset is overconstrained. Weight: -1medium *
nightCount.

Soft constraints:

• A patient can prefer a maximum room size, for example if he/she wants a single room. Weight:
-8soft * nightCount.

• A patient is best assigned to a department that specializes in his/her problem. Weight: -10soft *

62

nightCount.

• A patient is best assigned to a room that specializes in his/her problem. Weight: -20soft *
nightCount.

◦ That room speciality should be priority 1. Weight: -10soft * (priority - 1) * nightCount.

• A patient can prefer a room with specific equipment(s). Weight: -20soft * nightCount.

The problem is a variant on Kaho’s Patient Scheduling and the datasets come from real world
hospitals.

3.12.2. Problem size

testdata01 has 4 specialisms, 2 equipments, 4 departments, 98 rooms, 286 beds, 14
nights, 652 patients and 652 admissions with a search space of 10^1601.
testdata02 has 6 specialisms, 2 equipments, 6 departments, 151 rooms, 465 beds, 14
nights, 755 patients and 755 admissions with a search space of 10^2013.
testdata03 has 5 specialisms, 2 equipments, 5 departments, 131 rooms, 395 beds, 14
nights, 708 patients and 708 admissions with a search space of 10^1838.
testdata04 has 6 specialisms, 2 equipments, 6 departments, 155 rooms, 471 beds, 14
nights, 746 patients and 746 admissions with a search space of 10^1994.
testdata05 has 4 specialisms, 2 equipments, 4 departments, 102 rooms, 325 beds, 14
nights, 587 patients and 587 admissions with a search space of 10^1474.
testdata06 has 4 specialisms, 2 equipments, 4 departments, 104 rooms, 313 beds, 14
nights, 685 patients and 685 admissions with a search space of 10^1709.
testdata07 has 6 specialisms, 4 equipments, 6 departments, 162 rooms, 472 beds, 14
nights, 519 patients and 519 admissions with a search space of 10^1387.
testdata08 has 6 specialisms, 4 equipments, 6 departments, 148 rooms, 441 beds, 21
nights, 895 patients and 895 admissions with a search space of 10^2366.
testdata09 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds, 28
nights, 1400 patients and 1400 admissions with a search space of 10^3487.
testdata10 has 4 specialisms, 4 equipments, 4 departments, 104 rooms, 308 beds, 56
nights, 1575 patients and 1575 admissions with a search space of 10^3919.
testdata11 has 4 specialisms, 4 equipments, 4 departments, 107 rooms, 318 beds, 91
nights, 2514 patients and 2514 admissions with a search space of 10^6291.
testdata12 has 4 specialisms, 4 equipments, 4 departments, 105 rooms, 310 beds, 84
nights, 2750 patients and 2750 admissions with a search space of 10^6851.
testdata13 has 5 specialisms, 4 equipments, 5 departments, 125 rooms, 368 beds, 28
nights, 907 patients and 1109 admissions with a search space of 10^2845.

3.12.3. Domain model

63

https://people.cs.kuleuven.be/~wim.vancroonenburg/pas/

3.13. Task assigning

3.13.1. Problem description

Assign each task to a spot in an employee’s queue. Each task has a duration which is affected by the
employee’s affinity level with the task’s customer.

Hard constraints:

• Skill: Each task requires one or more skills. The employee must possess all these skills.

Soft level 0 constraints:

• Critical tasks: Complete critical tasks first, sooner than major and minor tasks.

Soft level 1 constraints:

• Minimize makespan: Reduce the time to complete all tasks.

◦ Start with the longest working employee first, then the second longest working employee
and so forth, to create fairness and load balancing.

Soft level 2 constraints:

• Major tasks: Complete major tasks as soon as possible, sooner than minor tasks.

64

Soft level 3 constraints:

• Minor tasks: Complete minor tasks as soon as possible.

3.13.2. Value proposition

3.13.3. Problem size

24tasks-8employees has 24 tasks, 6 skills, 8 employees, 4 task types and 4
customers with a search space of 10^30.
50tasks-5employees has 50 tasks, 5 skills, 5 employees, 10 task types and 10
customers with a search space of 10^69.
100tasks-5employees has 100 tasks, 5 skills, 5 employees, 20 task types and 15
customers with a search space of 10^164.
500tasks-20employees has 500 tasks, 6 skills, 20 employees, 100 task types and 60
customers with a search space of 10^1168.

3.13.4. Domain model

65

3.14. Exam timetabling (ITC 2007 track 1 -
Examination)

3.14.1. Problem description

Schedule each exam into a period and into a room. Multiple exams can share the same room during
the same period.

66

Hard constraints:

• Exam conflict: two exams that share students must not occur in the same period.

• Room capacity: A room’s seating capacity must suffice at all times.

• Period duration: A period’s duration must suffice for all of its exams.

• Period related hard constraints (specified per dataset):

◦ Coincidence: two specified exams must use the same period (but possibly another room).

◦ Exclusion: two specified exams must not use the same period.

◦ After: A specified exam must occur in a period after another specified exam’s period.

• Room related hard constraints (specified per dataset):

◦ Exclusive: one specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

• The same student should not have two exams in a row.

• The same student should not have two exams on the same day.

• Period spread: two exams that share students should be a number of periods apart.

• Mixed durations: two exams that share a room should not have different durations.

• Front load: Large exams should be scheduled earlier in the schedule.

67

• Period penalty (specified per dataset): Some periods have a penalty when used.

• Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1. Geoffrey De
Smet finished 4th in that competition with a very early version of OptaPlanner. Many
improvements have been made since then.

3.14.2. Problem size

exam_comp_set1 has 7883 students, 607 exams, 54 periods, 7 rooms, 12 period
constraints and 0 room constraints with a search space of 10^1564.
exam_comp_set2 has 12484 students, 870 exams, 40 periods, 49 rooms, 12 period
constraints and 2 room constraints with a search space of 10^2864.
exam_comp_set3 has 16365 students, 934 exams, 36 periods, 48 rooms, 168 period
constraints and 15 room constraints with a search space of 10^3023.
exam_comp_set4 has 4421 students, 273 exams, 21 periods, 1 rooms, 40 period
constraints and 0 room constraints with a search space of 10^360.
exam_comp_set5 has 8719 students, 1018 exams, 42 periods, 3 rooms, 27 period
constraints and 0 room constraints with a search space of 10^2138.
exam_comp_set6 has 7909 students, 242 exams, 16 periods, 8 rooms, 22 period
constraints and 0 room constraints with a search space of 10^509.
exam_comp_set7 has 13795 students, 1096 exams, 80 periods, 15 rooms, 28 period
constraints and 0 room constraints with a search space of 10^3374.
exam_comp_set8 has 7718 students, 598 exams, 80 periods, 8 rooms, 20 period
constraints and 1 room constraints with a search space of 10^1678.

3.14.3. Domain model

Below you can see the main examination domain classes:

68

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Figure 3. Examination Domain Class Diagram

Notice that we’ve split up the exam concept into an Exam class and a Topic class. The Exam instances
change during solving (this is the planning entity class), when their period or room property
changes. The Topic, Period and Room instances never change during solving (these are problem facts,
just like some other classes).

3.15. Nurse rostering (INRC 2010)

3.15.1. Problem description

For each shift, assign a nurse to work that shift.

69

Hard constraints:

• No unassigned shifts (built-in): Every shift need to be assigned to an employee.

• Shift conflict: An employee can have only one shift per day.

Soft constraints:

• Contract obligations. The business frequently violates these, so they decided to define these as
soft constraints instead of hard constraints.

◦ Minimum and maximum assignments: Each employee needs to work more than x shifts
and less than y shifts (depending on their contract).

◦ Minimum and maximum consecutive working days: Each employee needs to work
between x and y days in a row (depending on their contract).

◦ Minimum and maximum consecutive free days: Each employee needs to be free between
x and y days in a row (depending on their contract).

◦ Minimum and maximum consecutive working weekends: Each employee needs to work
between x and y weekends in a row (depending on their contract).

◦ Complete weekends: Each employee needs to work every day in a weekend or not at all.

◦ Identical shift types during weekend: Each weekend shift for the same weekend of the
same employee must be the same shift type.

◦ Unwanted patterns: A combination of unwanted shift types in a row. For example: a late

70

shift followed by an early shift followed by a late shift.

• Employee wishes:

◦ Day on request: An employee wants to work on a specific day.

◦ Day off request: An employee does not want to work on a specific day.

◦ Shift on request: An employee wants to be assigned to a specific shift.

◦ Shift off request: An employee does not want to be assigned to a specific shift.

• Alternative skill: An employee assigned to a skill should have a proficiency in every skill
required by that shift.

The problem is defined by the International Nurse Rostering Competition 2010.

3.15.2. Value proposition

3.15.3. Problem size

There are three dataset types:

• sprint: must be solved in seconds.

• medium: must be solved in minutes.

• long: must be solved in hours.

71

http://www.kuleuven-kortrijk.be/nrpcompetition

toy1 has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 employees, 7
shiftDates, 35 shiftAssignments and 0 requests with a search space of 10^27.
toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 employees, 28
shiftDates, 180 shiftAssignments and 140 requests with a search space of 10^234.

sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_late01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 employees, 28
shiftDates, 144 shiftAssignments and 139 requests with a search space of 10^144.
sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28
shiftDates, 160 shiftAssignments and 150 requests with a search space of 10^160.
sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28
shiftDates, 160 shiftAssignments and 150 requests with a search space of 10^160.
sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_late06 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.
sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 0 requests with a search space of 10^152.
sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 0 requests with a search space of 10^152.
sprint_late10 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28
shiftDates, 152 shiftAssignments and 150 requests with a search space of 10^152.

72

medium01 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28
shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.
medium02 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28
shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.
medium03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28
shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.
medium04 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28
shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.
medium05 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28
shiftDates, 608 shiftAssignments and 403 requests with a search space of 10^906.
medium_hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28
shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632.
medium_hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28
shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632.
medium_hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28
shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632.
medium_late01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28
shiftDates, 424 shiftAssignments and 390 requests with a search space of 10^626.
medium_late02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28
shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632.
medium_late03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 employees, 28
shiftDates, 428 shiftAssignments and 390 requests with a search space of 10^632.
medium_late04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28
shiftDates, 416 shiftAssignments and 390 requests with a search space of 10^614.
medium_late05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28
shiftDates, 452 shiftAssignments and 390 requests with a search space of 10^667.

long01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28
shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28
shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28
shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28
shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28
shiftDates, 740 shiftAssignments and 735 requests with a search space of 10^1250.
long_hint01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28
shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257.
long_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28
shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257.
long_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28
shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257.
long_late01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28
shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277.
long_late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28
shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277.
long_late03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28
shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277.
long_late04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28

73

shiftDates, 752 shiftAssignments and 0 requests with a search space of 10^1277.
long_late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28
shiftDates, 740 shiftAssignments and 0 requests with a search space of 10^1257.

3.15.4. Domain model

3.16. Traveling tournament problem (TTP)

3.16.1. Problem description

Schedule matches between n teams.

74

Hard constraints:

• Each team plays twice against every other team: once home and once away.

• Each team has exactly one match on each timeslot.

• No team must have more than three consecutive home or three consecutive away matches.

• No repeaters: no two consecutive matches of the same two opposing teams.

Soft constraints:

• Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick’s website (which contains the world records too).

3.16.2. Problem size

75

http://mat.tepper.cmu.edu/TOURN/

1-nl04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
1-nl06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
1-nl08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
1-nl10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
1-nl12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
1-nl14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
1-nl16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
2-bra24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
3-nfl16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
3-nfl18 has 34 days, 18 teams and 306 matches with a search space of 10^346.
3-nfl20 has 38 days, 20 teams and 380 matches with a search space of 10^447.
3-nfl22 has 42 days, 22 teams and 462 matches with a search space of 10^562.
3-nfl24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
3-nfl26 has 50 days, 26 teams and 650 matches with a search space of 10^838.
3-nfl28 has 54 days, 28 teams and 756 matches with a search space of 10^999.
3-nfl30 has 58 days, 30 teams and 870 matches with a search space of 10^1175.
3-nfl32 has 62 days, 32 teams and 992 matches with a search space of 10^1367.
4-super04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
4-super06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
4-super08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
4-super10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
4-super12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
4-super14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
5-galaxy04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
5-galaxy06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
5-galaxy08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
5-galaxy10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
5-galaxy12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
5-galaxy14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
5-galaxy16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
5-galaxy18 has 34 days, 18 teams and 306 matches with a search space of 10^346.
5-galaxy20 has 38 days, 20 teams and 380 matches with a search space of 10^447.
5-galaxy22 has 42 days, 22 teams and 462 matches with a search space of 10^562.
5-galaxy24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
5-galaxy26 has 50 days, 26 teams and 650 matches with a search space of 10^838.
5-galaxy28 has 54 days, 28 teams and 756 matches with a search space of 10^999.
5-galaxy30 has 58 days, 30 teams and 870 matches with a search space of 10^1175.
5-galaxy32 has 62 days, 32 teams and 992 matches with a search space of 10^1367.
5-galaxy34 has 66 days, 34 teams and 1122 matches with a search space of 10^1576.
5-galaxy36 has 70 days, 36 teams and 1260 matches with a search space of 10^1801.
5-galaxy38 has 74 days, 38 teams and 1406 matches with a search space of 10^2042.
5-galaxy40 has 78 days, 40 teams and 1560 matches with a search space of 10^2301.

3.17. Cheap time scheduling

3.17.1. Problem description

Schedule all tasks in time and on a machine to minimize power cost. Power prices differs in time.
This is a form of job shop scheduling.

76

Hard constraints:

• Start time limits: each task must start between its earliest start and latest start limit.

• Maximum capacity: the maximum capacity for each resource for each machine must not be
exceeded.

• Startup and shutdown: each machine must be active in the periods during which it has assigned
tasks. Between tasks it is allowed to be idle to avoid startup and shutdown costs.

Medium constraints:

• Power cost: minimize the total power cost of the whole schedule.

◦ Machine power cost: Each active or idle machine consumes power, which infers a power
cost (depending on the power price during that time).

◦ Task power cost: Each task consumes power too, which infers a power cost (depending on
the power price during its time).

◦ Machine startup and shutdown cost: Every time a machine starts up or shuts down, an extra
cost is inflicted.

Soft constraints (addendum to the original problem definition):

• Start early: prefer starting a task sooner rather than later.

The problem is defined by the ICON challenge 2014.

3.17.2. Problem size

sample01 has 3 resources, 2 machines, 288 periods and 25 tasks with a search
space of 10^53.
sample02 has 3 resources, 2 machines, 288 periods and 50 tasks with a search
space of 10^114.
sample03 has 3 resources, 2 machines, 288 periods and 100 tasks with a search
space of 10^226.
sample04 has 3 resources, 5 machines, 288 periods and 100 tasks with a search
space of 10^266.
sample05 has 3 resources, 2 machines, 288 periods and 250 tasks with a search
space of 10^584.
sample06 has 3 resources, 5 machines, 288 periods and 250 tasks with a search
space of 10^673.
sample07 has 3 resources, 2 machines, 288 periods and 1000 tasks with a search
space of 10^2388.
sample08 has 3 resources, 5 machines, 288 periods and 1000 tasks with a search
space of 10^2748.
sample09 has 4 resources, 20 machines, 288 periods and 2000 tasks with a search
space of 10^6668.
instance00 has 1 resources, 10 machines, 288 periods and 200 tasks with a search
space of 10^595.
instance01 has 1 resources, 10 machines, 288 periods and 200 tasks with a search
space of 10^599.

77

instance02 has 1 resources, 10 machines, 288 periods and 200 tasks with a search
space of 10^599.
instance03 has 1 resources, 10 machines, 288 periods and 200 tasks with a search
space of 10^591.
instance04 has 1 resources, 10 machines, 288 periods and 200 tasks with a search
space of 10^590.
instance05 has 2 resources, 25 machines, 288 periods and 200 tasks with a search
space of 10^667.
instance06 has 2 resources, 25 machines, 288 periods and 200 tasks with a search
space of 10^660.
instance07 has 2 resources, 25 machines, 288 periods and 200 tasks with a search
space of 10^662.
instance08 has 2 resources, 25 machines, 288 periods and 200 tasks with a search
space of 10^651.
instance09 has 2 resources, 25 machines, 288 periods and 200 tasks with a search
space of 10^659.
instance10 has 2 resources, 20 machines, 288 periods and 500 tasks with a search
space of 10^1657.
instance11 has 2 resources, 20 machines, 288 periods and 500 tasks with a search
space of 10^1644.
instance12 has 2 resources, 20 machines, 288 periods and 500 tasks with a search
space of 10^1637.
instance13 has 2 resources, 20 machines, 288 periods and 500 tasks with a search
space of 10^1659.
instance14 has 2 resources, 20 machines, 288 periods and 500 tasks with a search
space of 10^1643.
instance15 has 3 resources, 40 machines, 288 periods and 500 tasks with a search
space of 10^1782.
instance16 has 3 resources, 40 machines, 288 periods and 500 tasks with a search
space of 10^1778.
instance17 has 3 resources, 40 machines, 288 periods and 500 tasks with a search
space of 10^1764.
instance18 has 3 resources, 40 machines, 288 periods and 500 tasks with a search
space of 10^1769.
instance19 has 3 resources, 40 machines, 288 periods and 500 tasks with a search
space of 10^1778.
instance20 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search
space of 10^3689.
instance21 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search
space of 10^3678.
instance22 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search
space of 10^3706.
instance23 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search
space of 10^3676.
instance24 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search
space of 10^3681.
instance25 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search
space of 10^3774.
instance26 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search
space of 10^3737.
instance27 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search

78

space of 10^3744.
instance28 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search
space of 10^3731.
instance29 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search
space of 10^3746.
instance30 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search
space of 10^7718.
instance31 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search
space of 10^7740.
instance32 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search
space of 10^7686.
instance33 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search
space of 10^7672.
instance34 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search
space of 10^7695.
instance35 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search
space of 10^7807.
instance36 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search
space of 10^7814.
instance37 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search
space of 10^7764.
instance38 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search
space of 10^7736.
instance39 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search
space of 10^7783.
instance40 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search
space of 10^15976.
instance41 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search
space of 10^15935.
instance42 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search
space of 10^15887.
instance43 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search
space of 10^15896.
instance44 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search
space of 10^15885.
instance45 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search
space of 10^20173.
instance46 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search
space of 10^20132.
instance47 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search
space of 10^20126.
instance48 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search
space of 10^20110.
instance49 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search
space of 10^20078.

79

3.18. Investment asset class allocation (portfolio
optimization)

3.18.1. Problem description

Decide the relative quantity to invest in each asset class.

Hard constraints:

• Risk maximum: the total standard deviation must not be higher than the standard deviation
maximum.

◦ Total standard deviation calculation takes asset class correlations into account by applying
Markowitz Portfolio Theory.

• Region maximum: Each region has a quantity maximum.

• Sector maximum: Each sector has a quantity maximum.

Soft constraints:

• Maximize expected return.

3.18.2. Problem size

de_smet_1 has 1 regions, 3 sectors and 11 asset classes with a search space of 10^4.
irrinki_1 has 2 regions, 3 sectors and 6 asset classes with a search space of 10^3.

Larger datasets have not been created or tested yet, but should not pose a problem. A good source
of data is this Asset Correlation website.

3.19. Conference scheduling

3.19.1. Problem description

Assign each conference talk to a timeslot and a room, after the talks have been accepted.

80

https://en.wikipedia.org/wiki/Modern_portfolio_theory
https://www.portfoliovisualizer.com/asset-correlations

Timeslots can overlap. It reads/writes to/from an *.xlsx file that can be edited with LibreOffice or
Excel.

81

Built-in hard constraints:

• Talk type of timeslot: The type of a talk must match the timeslot’s talk type.

• Room unavailable timeslots: A talk’s room must be available during the talk’s timeslot.

Hard constraints (unless configured otherwise):

• Room conflict: Two talks can’t use the same room during overlapping timeslots.

• Speaker unavailable timeslots: Every talk’s speaker must be available during the talk’s timeslot.

• Speaker conflict: Two talks can’t share a speaker during overlapping timeslots.

• Talk prerequisite talks: A talk must be scheduled after all its prerequisite talks.

• Talk mutually-exclusive-talks tags: Talks that share such tags must not be scheduled in
overlapping timeslots.

• Consecutive talks pause: A speaker who has more than one talk must have a break between
them.

• Generic purpose timeslot and room tags

◦ Speaker required timeslot tags: If a speaker has a required timeslot tag, then all his/her talks
must be assigned to a timeslot with that tag.

◦ Speaker prohibited timeslot tags: If a speaker has a prohibited timeslot tag, then all his/her
talks cannot be assigned to a timeslot with that tag.

82

◦ Talk required timeslot tags: If a talk has a required timeslot tag, then it must be assigned to a
timeslot with that tag.

◦ Talk prohibited timeslot tags: If a talk has a prohibited timeslot tag, then it cannot be
assigned to a timeslot with that tag.

◦ Speaker required room tags: If a speaker has a required room tag, then all his/her talks must
be assigned to a room with that tag.

◦ Speaker prohibited room tags: If a speaker has a prohibited room tag, then all his/her talks
cannot be assigned to a room with that tag.

◦ Talk required room tags: If a talk has a required room tag, then it must be assigned to a
room with that tag.

◦ Talk prohibited room tags: If a talk has a prohibited room tag, then it cannot be assigned to a
room with that tag.

Medium constraints (unless configured otherwise):

• Published timeslot: A published talk must not be scheduled at a different timeslot than
currently published. If a hard constraint’s input data changes after publishing (such as speaker
unavailability), then this medium constraint will be minimally broken to attain a new feasible
solution.

Soft constraints (unless configured otherwise):

• Published room: Minimize the number of talks scheduled in different rooms than published
ones.

• Theme track conflict: Minimize the number of talks that share a same theme tag during
overlapping timeslots.

• Theme track room stability: Talks with common theme track tag should be scheduled in the
same room throughout the day.

• Sector conflict: Minimize the number of talks that share a same sector tag during overlapping
timeslots.

• Content audience level flow violation: For every content tag, schedule the introductory talks
before the advanced talks.

• Audience level diversity: For every timeslot, maximize the number of talks with a different
audience level.

• Language diversity: For every timeslot, maximize the number of talks with a different language.

• Same day talks: All talks that share a theme track tag or content tag should be scheduled in the
minimum number of days (ideally in the same day).

• Popular talks: Talks with higher favoriteCount should be scheduled in larger rooms.

• Crowd control: Talks with higher crowdControlRisk should be scheduled in pairs at the same
timeslot to avoid having most participants going to the same room.

• Generic purpose timeslot and room tags

◦ Speaker preferred timeslot tag: If a speaker has a preferred timeslot tag, then all his/her

83

talks should be assigned to a timeslot with that tag.

◦ Speaker undesired timeslot tag: If a speaker has an undesired timeslot tag, then all his/her
talks should not be assigned to a timeslot with that tag.

◦ Talk preferred timeslot tag: If a talk has a preferred timeslot tag, then it should be assigned
to a timeslot with that tag.

◦ Talk undesired timeslot tag: If a talk has an undesired timeslot tag, then it should not be
assigned to a timeslot with that tag.

◦ Speaker preferred room tag: If a speaker has a preferred room tag, then all his/her talks
should be assigned to a room with that tag.

◦ Speaker undesired room tag: If a speaker has an undesired room tag, then all his/her talks
should not be assigned to a room with that tag.

◦ Talk preferred room tag: If a talk has a preferred room tag, then it should be assigned to a
room with that tag.

◦ Talk undesired room tag: If a talk has an undesired room tag, then it should not be assigned
to a room with that tag.

Every constraint can be configured to use a different score level (hard/medium/soft) or a different
score weight.

84

3.19.2. Value proposition

3.19.3. Problem size

18talks-6timeslots-5rooms has 18 talks, 6 timeslots and 5 rooms with a search
space of 10^26.
36talks-12timeslots-5rooms has 36 talks, 12 timeslots and 5 rooms with a search
space of 10^64.
72talks-12timeslots-10rooms has 72 talks, 12 timeslots and 10 rooms with a search
space of 10^149.
108talks-18timeslots-10rooms has 108 talks, 18 timeslots and 10 rooms with a search
space of 10^243.
216talks-18timeslots-20rooms has 216 talks, 18 timeslots and 20 rooms with a search
space of 10^552.

3.19.4. Architecture

85

3.19.5. Domain model

86

3.19.6. Search space

87

88

3.20. Rock tour

3.20.1. Problem description

Drive the rock bus from show to show, but schedule shows only on available days.

Hard constraints:

• Schedule every required show.

• Schedule as many shows as possible.

Medium constraints:

• Maximize revenue opportunity.

• Minimize driving time.

• Visit sooner than later.

Soft constraints:

• Avoid long driving times.

89

3.20.2. Problem size

47shows has 47 shows with a search space of 10^59.

3.21. Flight crew scheduling

3.21.1. Problem description

Assign flights to pilots and flight attendants.

Hard constraints:

• Required skill: each flight assignment has a required skill. For example, flight AB0001 requires 2
pilots and 3 flight attendants.

• Flight conflict: each employee can only attend one flight at the same time

• Transfer between two flights: between two flights, an employee must be able to transfer from
the arrival airport to the departure airport. For example, Ann arrives in Brussels at 10:00 and
departs in Amsterdam at 15:00.

• Employee unavailability: the employee must be available on the day of the flight. For example,
Ann is on vacation on 1-Feb.

Soft constraints:

• First assignment departing from home

• Last assignment arriving at home

• Load balance flight duration total per employee

3.21.2. Problem size

175flights-7days-Europe has 2 skills, 50 airports, 150 employees, 175 flights and
875 flight assignments with a search space of 10^1904.
700flights-28days-Europe has 2 skills, 50 airports, 150 employees, 700 flights and
3500 flight assignments with a search space of 10^7616.
875flights-7days-Europe has 2 skills, 50 airports, 750 employees, 875 flights and
4375 flight assignments with a search space of 10^12578.
175flights-7days-US has 2 skills, 48 airports, 150 employees, 175 flights and
875 flight assignments with a search space of 10^1904.

90

Chapter 4. OptaPlanner configuration

4.1. Overview
Solving a planning problem with OptaPlanner consists of the following steps:

1. Model your planning problem as a class annotated with the @PlanningSolution annotation, for
example the NQueens class.

2. Configure a Solver, for example a First Fit and Tabu Search solver for any NQueens instance.

3. Load a problem data set from your data layer, for example a Four Queens instance. That is the
planning problem.

4. Solve it with Solver.solve(problem) which returns the best solution found.

4.2. Solver configuration

4.2.1. Solver configuration by XML

Build a Solver instance with the SolverFactory. Configure the SolverFactory with a solver
configuration XML file, provided as a classpath resource (as defined by ClassLoader.getResource()):

91

 SolverFactory<NQueens> solverFactory = SolverFactory.createFromXmlResource(
 "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");
 Solver<NQueens> solver = solverFactory.buildSolver();

In a typical project (following the Maven directory structure), that solverConfig XML file would be
located at
$PROJECT_DIR/src/main/resources/org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml
. Alternatively, a SolverFactory can be created from a File with SolverFactory.createFromXmlFile().
However, for portability reasons, a classpath resource is recommended.

On some environments (OSGi, JBoss modules, …), classpath resources (such as the
solver config, score DRLs and domain classes) in your jars might not be available
to the default ClassLoader of the optaplanner-core jar. In those cases, provide the
ClassLoader of your classes as a parameter:

 SolverFactory<NQueens> solverFactory = SolverFactory
.createFromXmlResource(
 ".../nqueensSolverConfig.xml", getClass().
getClassLoader());

When using Workbench or Execution Server or to take advantage of Drools’s
KieContainer features, provide the KieContainer as a parameter:

 KieServices kieServices = KieServices.Factory.get();
 KieContainer kieContainer = kieServices.newKieContainer(
 kieServices.newReleaseId("org.nqueens", "nqueens",
"1.0.0"));
 SolverFactory<NQueens> solverFactory = SolverFactory
.createFromKieContainerXmlResource(
 kieContainer, ".../nqueensSolverConfig.xml");

Also use a ksessionName in the solver configuration.

Both a Solver and a SolverFactory have a generic type called Solution_, which is the class
representing a planning problem and solution.

A solver configuration XML file looks like this:

92

<?xml version="1.0" encoding="UTF-8"?>
<solver>
 <!-- Define the model -->
 <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</solutionClass>
 <entityClass>org.optaplanner.examples.nqueens.domain.Queen</entityClass>

 <!-- Define the score function -->
 <scoreDirectorFactory>
 <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
 </scoreDirectorFactory>

 <!-- Configure the optimization algorithms (optional) -->
 <termination>
 ...
 </termination>
 <constructionHeuristic>
 ...
 </constructionHeuristic>
 <localSearch>
 ...
 </localSearch>
</solver>

Notice the three parts in it:

• Define the model.

• Define the score function.

• Optionally configure the optimization algorithm(s).

These various parts of a configuration are explained further in this manual.

OptaPlanner makes it relatively easy to switch optimization algorithm(s) just by changing the
configuration. There is even a Benchmarker which allows you to play out different configurations
against each other and report the most appropriate configuration for your use case.

4.2.2. Solver configuration by Java API

A solver configuration can also be configured with the SolverConfig API. This is especially useful to
change some values dynamically at runtime. For example, to change the running time based on
system property, before building the Solver:

93

 SolverConfig solverConfig = SolverConfig.createFromXmlResource(
 "org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");
 solverConfig.withTerminationConfig(new TerminationConfig()
 .withMinutesSpentLimit(userInput));

 SolverFactory<NQueens> solverFactory = SolverFactory.create(solverConfig);
 Solver<NQueens> solver = solverFactory.buildSolver();

Every element in the solver configuration XML is available as a *Config class or a property on a
*Config class in the package namespace org.optaplanner.core.config. These *Config classes are the
Java representation of the XML format. They build the runtime components (of the package
namespace org.optaplanner.core.impl) and assemble them into an efficient Solver.

To configure a SolverFactory dynamically for each user request, build a template
SolverConfig during initialization and copy it with the copy constructor for each
user request:

 private SolverConfig template;

 public void init() {
 template = SolverConfig.createFromXmlResource(

"org/optaplanner/examples/nqueens/solver/nqueensSolverConfig.xml");
 template.setTerminationConfig(new TerminationConfig());
 }

 // Called concurrently from different threads
 public void userRequest(..., long userInput) {
 SolverConfig solverConfig = new SolverConfig(template); // Copy
it
 solverConfig.getTerminationConfig().setMinutesSpentLimit
(userInput);
 SolverFactory<NQueens> solverFactory = SolverFactory.create
(solverConfig);
 Solver<NQueens> solver = solverFactory.buildSolver();
 ...
 }

4.2.3. Annotations configuration

4.2.3.1. Automatic scanning for annotations

Instead of declaring classes that have a @PlanningSolution or @PlanningEntity manually:

94

<solver>
 <!-- Define the model -->
 <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</solutionClass>
 <entityClass>org.optaplanner.examples.nqueens.domain.Queen</entityClass>

 ...
</solver>

OptaPlanner can find scan the classpath and find them automatically:

<solver>
 <!-- Define the model -->
 <scanAnnotatedClasses/>

 ...
</solver>

On environments such as OSGi and Android, which use a non-standard
ClassLoader, automated scanning might not find the @PlanningSolution or
@PlanningEntity classes.

Automated scanning inflicts a performance cost during bootstrap. To speed up scanning or if there
are multiple models in your classpath, specify the packages to scan:

<solver>
 <!-- Define the model -->
 <scanAnnotatedClasses>
 <packageInclude>org.optaplanner.examples.cloudbalancing</packageInclude>
 </scanAnnotatedClasses>

 ...
</solver>

This finds all solution and entity classes in that package or its subpackages.

If scanAnnotatedClasses is not specified, the org.reflections transitive maven
dependency can be excluded.

4.2.3.2. Annotation alternatives

OptaPlanner needs to be told which classes in your domain model are planning entities, which
properties are planning variables, etc. There are several ways to deliver this information:

• Add class annotations and JavaBean property annotations on the domain model
(recommended). The property annotations must be on the getter method, not on the setter
method. Such a getter does not need to be public.

95

• Add class annotations and field annotations on the domain model. Such a field does not need to
be public.

• No annotations: externalize the domain configuration in an XML file. This is not yet supported.

This manual focuses on the first manner, but every feature supports all three manners, even if it’s
not explicitly mentioned.

4.2.4. Custom properties configuration

Solver configuration elements, that instantiate classes and explicitly mention it, support custom
properties. Custom properties are useful to tweak dynamic values through the Benchmarker. For
example, presume your EasyScoreCalculator has heavy calculations (which are cached) and you
want to increase the cache size in one benchmark:

 <scoreDirectorFactory>
 <easyScoreCalculatorClass>...MyEasyScoreCalculator</easyScoreCalculatorClass>
 <easyScoreCalculatorCustomProperties>
 <myCacheSize>1000</myCacheSize><!-- Override value -->
 </easyScoreCalculatorCustomProperties>
 </scoreDirectorFactory>

Add a public setter for each custom property, which is called when a Solver is built.

public class MyEasyScoreCalculator extends EasyScoreCalculator<MySolution> {

 private int myCacheSize = 500; // Default value

 @SuppressWarnings("unused")
 public void setMyCacheSize(int myCacheSize) {
 this.myCacheSize = myCacheSize;
 }

 ...
}

Most value types are supported (including boolean, int, double, BigDecimal, String and enums).

4.3. Model a planning problem

4.3.1. Is this class a problem fact or planning entity?

Look at a dataset of your planning problem. You will recognize domain classes in there, each of
which can be categorized as one of the following:

• An unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

96

https://issues.redhat.com/browse/PLANNER-151

• A problem fact class: used by the score constraints, but does NOT change during planning (as
long as the problem stays the same). For example: Bed, Room, Shift, Employee, Topic, Period, … All
the properties of a problem fact class are problem properties.

• A planning entity class: used by the score constraints and changes during planning. For
example: BedDesignation, ShiftAssignment, Exam, … The properties that change during planning
are planning variables. The other properties are problem properties.

Ask yourself: What class changes during planning? Which class has variables that I want the Solver
to change for me? That class is a planning entity. Most use cases have only one planning entity class.
Most use cases also have only one planning variable per planning entity class.

In real-time planning, even though the problem itself changes, problem facts do
not really change during planning, instead they change between planning
(because the Solver temporarily stops to apply the problem fact changes).

To create a good domain model, read the domain modeling guide.

In OptaPlanner, all problem facts and planning entities are plain old JavaBeans (POJOs). Load
them from a database, an XML file, a data repository, a REST service, a noSQL cloud, … (see
integration): it doesn’t matter.

4.3.2. Problem fact

A problem fact is any JavaBean (POJO) with getters that does not change during planning.
Implementing the interface Serializable is recommended (but not required). For example in n
queens, the columns and rows are problem facts:

public class Column implements Serializable {

 private int index;

 // ... getters
}

public class Row implements Serializable {

 private int index;

 // ... getters
}

A problem fact can reference other problem facts of course:

97

public class Course implements Serializable {

 private String code;

 private Teacher teacher; // Other problem fact
 private int lectureSize;
 private int minWorkingDaySize;

 private List<Curriculum> curriculumList; // Other problem facts
 private int studentSize;

 // ... getters
}

A problem fact class does not require any OptaPlanner specific code. For example, you can reuse
your domain classes, which might have JPA annotations.

Generally, better designed domain classes lead to simpler and more efficient score
constraints. Therefore, when dealing with a messy (denormalized) legacy system,
it can sometimes be worthwhile to convert the messy domain model into a
OptaPlanner specific model first. For example: if your domain model has two
Teacher instances for the same teacher that teaches at two different departments, it
is harder to write a correct score constraint that constrains a teacher’s spare time
on the original model than on an adjusted model.

Alternatively, you can sometimes also introduce a cached problem fact to enrich
the domain model for planning only.

4.3.3. Planning entity

4.3.3.1. Planning entity annotation

A planning entity is a JavaBean (POJO) that changes during solving, for example a Queen that
changes to another row. A planning problem has multiple planning entities, for example for a
single n queens problem, each Queen is a planning entity. But there is usually only one planning
entity class, for example the Queen class.

A planning entity class needs to be annotated with the @PlanningEntity annotation.

Each planning entity class has one or more planning variables (which can be genuine or shadows).
It should also have one or more defining properties. For example in n queens, a Queen is defined by
its Column and has a planning variable Row. This means that a Queen’s column never changes during
solving, while its row does change.

98

@PlanningEntity
public class Queen {

 private Column column;

 // Planning variables: changes during planning, between score calculations.
 private Row row;

 // ... getters and setters
}

A planning entity class can have multiple planning variables. For example, a Lecture is defined by
its Course and its index in that course (because one course has multiple lectures). Each Lecture
needs to be scheduled into a Period and a Room so it has two planning variables (period and room).
For example: the course Mathematics has eight lectures per week, of which the first lecture is
Monday morning at 08:00 in room 212.

@PlanningEntity
public class Lecture {

 private Course course;
 private int lectureIndexInCourse;

 // Planning variables: changes during planning, between score calculations.
 private Period period;
 private Room room;

 // ...
}

Without automated scanning, the solver configuration also needs to declare each planning entity
class:

<solver>
 ...
 <entityClass>org.optaplanner.examples.nqueens.domain.Queen</entityClass>
 ...
</solver>

Some uses cases have multiple planning entity classes. For example: route freight and trains into
railway network arcs, where each freight can use multiple trains over its journey and each train
can carry multiple freights per arc. Having multiple planning entity classes directly raises the
implementation complexity of your use case.

99

Do not create unnecessary planning entity classes. This leads to difficult Move
implementations and slower score calculation.

For example, do not create a planning entity class to hold the total free time of a
teacher, which needs to be kept up to date as the Lecture planning entities change.
Instead, calculate the free time in the score constraints (or as a shadow variable)
and put the result per teacher into a logically inserted score object.

If historic data needs to be considered too, then create problem fact to hold the
total of the historic assignments up to, but not including, the planning window (so
that it does not change when a planning entity changes) and let the score
constraints take it into account.

4.3.3.2. Planning entity difficulty

Some optimization algorithms work more efficiently if they have an estimation of which planning
entities are more difficult to plan. For example: in bin packing bigger items are harder to fit, in
course scheduling lectures with more students are more difficult to schedule, and in n queens the
middle queens are more difficult to fit on the board.

Do not try to use planning entity difficulty to implement a business
constraint. It will not affect the score function: if we have infinite solving time,
the returned solution will be the same.

To attain a schedule in which certain entities are scheduled earlier in the schedule,
add a score constraint to change the score function so it prefers such solutions.
Only consider adding planning entity difficulty too if it can make the solver more
efficient.

To allow the heuristics to take advantage of that domain specific information, set a
difficultyComparatorClass to the @PlanningEntity annotation:

@PlanningEntity(difficultyComparatorClass = CloudProcessDifficultyComparator.class)
public class CloudProcess {
 // ...
}

public class CloudProcessDifficultyComparator implements Comparator<CloudProcess> {

 public int compare(CloudProcess a, CloudProcess b) {
 return new CompareToBuilder()
 .append(a.getRequiredMultiplicand(), b.getRequiredMultiplicand())
 .append(a.getId(), b.getId())
 .toComparison();
 }

}

100

Alternatively, you can also set a difficultyWeightFactoryClass to the @PlanningEntity annotation, so
that you have access to the rest of the problem facts from the solution too:

@PlanningEntity(difficultyWeightFactoryClass = QueenDifficultyWeightFactory.class)
public class Queen {
 // ...
}

See sorted selection for more information.

Difficulty should be implemented ascending: easy entities are lower, difficult
entities are higher. For example, in bin packing: small item < medium item < big
item.

Although most algorithms start with the more difficult entities first, they just
reverse the ordering.

None of the current planning variable states should be used to compare planning entity difficulty.
During Construction Heuristics, those variables are likely to be null anyway. For example, a Queen's
row variable should not be used.

4.3.4. Planning variable (genuine)

4.3.4.1. Planning variable annotation

A planning variable is a JavaBean property (so a getter and setter) on a planning entity. It points to
a planning value, which changes during planning. For example, a Queen's row property is a genuine
planning variable. Note that even though a Queen's row property changes to another Row during
planning, no Row instance itself is changed. Normally planning variables are genuine, but advanced
cases can also have shadows.

A genuine planning variable getter needs to be annotated with the @PlanningVariable annotation,
which needs a non-empty valueRangeProviderRefs property.

101

@PlanningEntity
public class Queen {
 ...

 private Row row;

 @PlanningVariable(valueRangeProviderRefs = {"rowRange"})
 public Row getRow() {
 return row;
 }

 public void setRow(Row row) {
 this.row = row;
 }

}

The valueRangeProviderRefs property defines what are the possible planning values for this
planning variable. It references one or more @ValueRangeProvider id's.

A @PlanningVariable annotation needs to be on a member in a class with a
@PlanningEntity annotation. It is ignored on parent classes or subclasses without
that annotation.

Annotating the field instead of the property works too:

@PlanningEntity
public class Queen {
 ...

 @PlanningVariable(valueRangeProviderRefs = {"rowRange"})
 private Row row;

}

4.3.4.2. Nullable planning variable

By default, an initialized planning variable cannot be null, so an initialized solution will never use
null for any of its planning variables. In an over-constrained use case, this can be
counterproductive. For example: in task assignment with too many tasks for the workforce, we
would rather leave low priority tasks unassigned instead of assigning them to an overloaded
worker.

To allow an initialized planning variable to be null, set nullable to true:

102

 @PlanningVariable(..., nullable = true)
 public Worker getWorker() {
 return worker;
 }

OptaPlanner will automatically add the value null to the value range. There is no
need to add null in a collection used by a ValueRangeProvider.

Using a nullable planning variable implies that your score calculation is
responsible for punishing (or even rewarding) variables with a null value.

 Currently chained planning variables are not compatible with nullable.

Repeated planning (especially real-time planning) does not mix well with a nullable planning
variable. Every time the Solver starts or a problem fact change is made, the Construction Heuristics
will try to initialize all the null variables again, which can be a huge waste of time. One way to deal
with this, is to change when a planning entity should be reinitialized with an
reinitializeVariableEntityFilter:

 @PlanningVariable(..., nullable = true, reinitializeVariableEntityFilter =
ReinitializeTaskFilter.class)
 public Worker getWorker() {
 return worker;
 }

4.3.4.3. When is a planning variable considered initialized?

A planning variable is considered initialized if its value is not null or if the variable is nullable. So a
nullable variable is always considered initialized, even when a custom
reinitializeVariableEntityFilter triggers a reinitialization during construction heuristics.

A planning entity is initialized if all of its planning variables are initialized.

A solution is initialized if all of its planning entities are initialized.

4.3.5. Planning value and planning value range

4.3.5.1. Planning value

A planning value is a possible value for a genuine planning variable. Usually, a planning value is a
problem fact, but it can also be any object, for example a double. It can even be another planning
entity or even an interface implemented by both a planning entity and a problem fact.

A planning value range is the set of possible planning values for a planning variable. This set can be
a countable (for example row 1, 2, 3 or 4) or uncountable (for example any double between 0.0 and
1.0).

103

4.3.5.2. Planning value range provider

4.3.5.2.1. Overview

The value range of a planning variable is defined with the @ValueRangeProvider annotation. A
@ValueRangeProvider annotation always has a property id, which is referenced by the
@PlanningVariable's property valueRangeProviderRefs.

This annotation can be located on two types of methods:

• On the Solution: All planning entities share the same value range.

• On the planning entity: The value range differs per planning entity. This is less common.

A @ValueRangeProvider annotation needs to be on a member in a class with a
@PlanningSolution or a @PlanningEntity annotation. It is ignored on parent
classes or subclasses without those annotations.

The return type of that method can be three types:

• Collection: The value range is defined by a Collection (usually a List) of its possible values.

• Array: The value range is defined by an array of its possible values.

• ValueRange: The value range is defined by its bounds. This is less common.

4.3.5.2.2. ValueRangeProvider on the solution

All instances of the same planning entity class share the same set of possible planning values for
that planning variable. This is the most common way to configure a value range.

The @PlanningSolution implementation has method that returns a Collection (or a ValueRange). Any
value from that Collection is a possible planning value for this planning variable.

 @PlanningVariable(valueRangeProviderRefs = {"rowRange"})
 public Row getRow() {
 return row;
 }

@PlanningSolution
public class NQueens {
 ...

 @ValueRangeProvider(id = "rowRange")
 public List<Row> getRowList() {
 return rowList;
 }

}

104

That Collection (or ValueRange) must not contain the value null, not even for a
nullable planning variable.

Annotating the field instead of the property works too:

@PlanningSolution
public class NQueens {
 ...

 @ValueRangeProvider(id = "rowRange")
 private List<Row> rowList;

}

4.3.5.2.3. ValueRangeProvider on the Planning Entity

Each planning entity has its own value range (a set of possible planning values) for the planning
variable. For example, if a teacher can never teach in a room that does not belong to his
department, lectures of that teacher can limit their room value range to the rooms of his
department.

 @PlanningVariable(valueRangeProviderRefs = {"departmentRoomRange"})
 public Room getRoom() {
 return room;
 }

 @ValueRangeProvider(id = "departmentRoomRange")
 public List<Room> getPossibleRoomList() {
 return getCourse().getTeacher().getDepartment().getRoomList();
 }

Never use this to enforce a soft constraint (or even a hard constraint when the problem might not
have a feasible solution). For example: Unless there is no other way, a teacher can not teach in a
room that does not belong to his department. In this case, the teacher should not be limited in his
room value range (because sometimes there is no other way).

By limiting the value range specifically of one planning entity, you are effectively
creating a built-in hard constraint. This can have the benefit of severely lowering
the number of possible solutions; however, it can also take away the freedom of
the optimization algorithms to temporarily break that constraint in order to escape
from a local optimum.

A planning entity should not use other planning entities to determine its value range. That would
only try to make the planning entity solve the planning problem itself and interfere with the
optimization algorithms.

Every entity has its own List instance, unless multiple entities have the same value range. For

105

example, if teacher A and B belong to the same department, they use the same List<Room> instance.
Furthermore, each List contains a subset of the same set of planning value instances. For example,
if department A and B can both use room X, then their List<Room> instances contain the same Room
instance.

A ValueRangeProvider on the planning entity consumes more memory than
ValueRangeProvider on the Solution and disables certain automatic performance
optimizations.

A ValueRangeProvider on the planning entity is not currently compatible with a
chained variable.

4.3.5.2.4. ValueRangeFactory

Instead of a Collection, you can also return a ValueRange or CountableValueRange, build by the
ValueRangeFactory:

 @ValueRangeProvider(id = "delayRange")
 public CountableValueRange<Integer> getDelayRange() {
 return ValueRangeFactory.createIntValueRange(0, 5000);
 }

A ValueRange uses far less memory, because it only holds the bounds. In the example above, a
Collection would need to hold all 5000 ints, instead of just the two bounds.

Furthermore, an incrementUnit can be specified, for example if you have to buy stocks in units of
200 pieces:

 @ValueRangeProvider(id = "stockAmountRange")
 public CountableValueRange<Integer> getStockAmountRange() {
 // Range: 0, 200, 400, 600, ..., 9999600, 9999800, 10000000
 return ValueRangeFactory.createIntValueRange(0, 10000000, 200);
 }

Return CountableValueRange instead of ValueRange whenever possible (so
OptaPlanner knows that it’s countable).

The ValueRangeFactory has creation methods for several value class types:

• boolean: A boolean range.

• int: A 32bit integer range.

• long: A 64bit integer range.

• double: A 64bit floating point range which only supports random selection (because it does not
implement CountableValueRange).

• BigInteger: An arbitrary-precision integer range.

106

• BigDecimal: A decimal point range. By default, the increment unit is the lowest non-zero value in
the scale of the bounds.

• Temporal (such as LocalDate, LocalDateTime, …): A time range.

4.3.5.2.5. Combine ValueRangeProviders

Value range providers can be combined, for example:

 @PlanningVariable(valueRangeProviderRefs = {"companyCarRange", "personalCarRange"
})
 public Car getCar() {
 return car;
 }

 @ValueRangeProvider(id = "companyCarRange")
 public List<CompanyCar> getCompanyCarList() {
 return companyCarList;
 }

 @ValueRangeProvider(id = "personalCarRange")
 public List<PersonalCar> getPersonalCarList() {
 return personalCarList;
 }

4.3.5.3. Planning value strength

Some optimization algorithms work a bit more efficiently if they have an estimation of which
planning values are stronger, which means they are more likely to satisfy a planning entity. For
example: in bin packing bigger containers are more likely to fit an item and in course scheduling
bigger rooms are less likely to break the student capacity constraint. Usually, the efficiency gain of
planning value strength is far less than that of planning entity difficulty.

Do not try to use planning value strength to implement a business constraint.
It will not affect the score function: if we have infinite solving time, the returned
solution will be the same.

To affect the score function, add a score constraint. Only consider adding planning
value strength too if it can make the solver more efficient.

To allow the heuristics to take advantage of that domain specific information, set a
strengthComparatorClass to the @PlanningVariable annotation:

107

 @PlanningVariable(..., strengthComparatorClass = CloudComputerStrengthComparator
.class)
 public CloudComputer getComputer() {
 return computer;
 }

public class CloudComputerStrengthComparator implements Comparator<CloudComputer> {

 public int compare(CloudComputer a, CloudComputer b) {
 return new CompareToBuilder()
 .append(a.getMultiplicand(), b.getMultiplicand())
 .append(b.getCost(), a.getCost()) // Descending (but this is
debatable)
 .append(a.getId(), b.getId())
 .toComparison();
 }

}

If you have multiple planning value classes in the same value range, the
strengthComparatorClass needs to implement a Comparator of a common superclass
(for example Comparator<Object>) and be able to handle comparing instances of
those different classes.

Alternatively, you can also set a strengthWeightFactoryClass to the @PlanningVariable annotation, so
you have access to the rest of the problem facts from the solution too:

 @PlanningVariable(..., strengthWeightFactoryClass = RowStrengthWeightFactory.
class)
 public Row getRow() {
 return row;
 }

See sorted selection for more information.

Strength should be implemented ascending: weaker values are lower, stronger
values are higher. For example in bin packing: small container < medium
container < big container.

None of the current planning variable state in any of the planning entities should be used to compare
planning values. During construction heuristics, those variables are likely to be null. For example,
none of the row variables of any Queen may be used to determine the strength of a Row.

4.3.5.4. Chained planning variable (TSP, VRP, …)

Some use cases, such as TSP and Vehicle Routing, require chaining. This means the planning entities

108

point to each other and form a chain. By modeling the problem as a set of chains (instead of a set of
trees/loops), the search space is heavily reduced.

A planning variable that is chained either:

• Directly points to a problem fact (or planning entity), which is called an anchor.

• Points to another planning entity with the same planning variable, which recursively points to
an anchor.

Here are some examples of valid and invalid chains:

Every initialized planning entity is part of an open-ended chain that begins from an anchor. A
valid model means that:

• A chain is never a loop. The tail is always open.

• Every chain always has exactly one anchor. The anchor is never an instance of the planning
entity class that contains the chained planning variable.

• A chain is never a tree, it is always a line. Every anchor or planning entity has at most one
trailing planning entity.

• Every initialized planning entity is part of a chain.

• An anchor with no planning entities pointing to it, is also considered a chain.

109

 A planning problem instance given to the Solver must be valid.

If your constraints dictate a closed chain, model it as an open-ended chain (which
is easier to persist in a database) and implement a score constraint for the last
entity back to the anchor.

The optimization algorithms and built-in Moves do chain correction to guarantee that the model
stays valid:

 A custom Move implementation must leave the model in a valid state.

For example, in TSP the anchor is a Domicile (in vehicle routing it is Vehicle):

public class Domicile ... implements Standstill {
 ...

 public City getCity() {...}

}

The anchor (which is a problem fact) and the planning entity implement a common interface, for
example TSP’s Standstill:

110

public interface Standstill {

 City getCity();

}

That interface is the return type of the planning variable. Furthermore, the planning variable is
chained. For example TSP’s Visit (in vehicle routing it is Customer):

@PlanningEntity
public class Visit ... implements Standstill {
 ...

 public City getCity() {...}

 @PlanningVariable(graphType = PlanningVariableGraphType.CHAINED,
 valueRangeProviderRefs = {"domicileRange", "visitRange"})
 public Standstill getPreviousStandstill() {
 return previousStandstill;
 }

 public void setPreviousStandstill(Standstill previousStandstill) {
 this.previousStandstill = previousStandstill;
 }

}

Notice how two value range providers are usually combined:

• The value range provider that holds the anchors, for example domicileList.

• The value range provider that holds the initialized planning entities, for example visitList.

4.3.6. Planning problem and planning solution

4.3.6.1. Planning problem instance

A dataset for a planning problem needs to be wrapped in a class for the Solver to solve. That
solution class represents both the planning problem and (if solved) a solution. It is annotated with a
@PlanningSolution annotation. For example in n queens, the solution class is the NQueens class, which
contains a Column list, a Row list, and a Queen list.

A planning problem is actually an unsolved planning solution or - stated differently - an
uninitialized solution. For example in n queens, that NQueens class has the @PlanningSolution
annotation, yet every Queen in an unsolved NQueens class is not yet assigned to a Row (their row
property is null). That’s not a feasible solution. It’s not even a possible solution. It’s an uninitialized
solution.

111

4.3.6.2. Solution class

A solution class holds all problem facts, planning entities and a score. It is annotated with a
@PlanningSolution annotation. For example, an NQueens instance holds a list of all columns, all rows
and all Queen instances:

@PlanningSolution
public class NQueens {

 // Problem facts
 private int n;
 private List<Column> columnList;
 private List<Row> rowList;

 // Planning entities
 private List<Queen> queenList;

 private SimpleScore score;

 ...
}

Without automated scanning, the solver configuration also needs to declare the planning solution
class:

<solver>
 ...
 <solutionClass>org.optaplanner.examples.nqueens.domain.NQueens</solutionClass>
 ...
</solver>

4.3.6.3. Planning entities of a solution (@PlanningEntityCollectionProperty)

OptaPlanner needs to extract the entity instances from the solution instance. It gets those
collection(s) by calling every getter (or field) that is annotated with
@PlanningEntityCollectionProperty:

112

@PlanningSolution
public class NQueens {
 ...

 private List<Queen> queenList;

 @PlanningEntityCollectionProperty
 public List<Queen> getQueenList() {
 return queenList;
 }

}

There can be multiple @PlanningEntityCollectionProperty annotated members. Those can even
return a Collection with the same entity class type. Instead of Collection, it can also return an
array.

A @PlanningEntityCollectionProperty annotation needs to be on a member in a
class with a @PlanningSolution annotation. It is ignored on parent classes or
subclasses without that annotation.

In rare cases, a planning entity might be a singleton: use @PlanningEntityProperty on its getter (or
field) instead.

Both annotations can also be auto discovered if enabled.

4.3.6.4. Score of asSolution (@PlanningScore)

A @PlanningSolution class requires a score property (or field), which is annotated with a
@PlanningScore annotation. The score property is null if the score hasn’t been calculated yet. The
score property is typed to the specific Score implementation of your use case. For example, NQueens
uses a SimpleScore:

@PlanningSolution
public class NQueens {
 ...

 private SimpleScore score;

 @PlanningScore
 public SimpleScore getScore() {
 return score;
 }
 public void setScore(SimpleScore score) {
 this.score = score;
 }

}

113

Most use cases use a HardSoftScore instead:

@PlanningSolution
public class CloudBalance {
 ...

 private HardSoftScore score;

 @PlanningScore
 public HardSoftScore getScore() {
 return score;
 }

 public void setScore(HardSoftScore score) {
 this.score = score;
 }

}

Some use cases use other score types.

This annotation can also be auto discovered if enabled.

4.3.6.5. Problem facts of a solution (@ProblemFactCollectionProperty)

For constraint streams and Drools score calculation, OptaPlanner needs to extract the problem fact
instances from the solution instance. It gets those collection(s) by calling every method (or field)
that is annotated with @ProblemFactCollectionProperty. All objects returned by those methods will
be inserted into the ConstrainStreams or Drools session, so the constraint steams or score rules can
access them. For example in NQueens all Column and Row instances are problem facts.

114

@PlanningSolution
public class NQueens {
 ...

 private List<Column> columnList;
 private List<Row> rowList;

 @ProblemFactCollectionProperty
 public List<Column> getColumnList() {
 return columnList;
 }

 @ProblemFactCollectionProperty
 public List<Row> getRowList() {
 return rowList;
 }

}

All planning entities are automatically inserted into the Drools working memory. Do note add an
annotation on their properties.

The problem facts methods are not called often: at most only once per solver phase
per solver thread.

There can be multiple @ProblemFactCollectionProperty annotated members. Those can even return
a Collection with the same class type, but they shouldn’t return the same instance twice. Instead of
Collection, it can also return an array.

A @ProblemFactCollectionProperty annotation needs to be on a member in a class
with a @PlanningSolution annotation. It is ignored on parent classes or subclasses
without that annotation.

In rare cases, a problem fact might be a singleton: use @ProblemFactProperty on its method (or field)
instead.

Both annotations can also be auto discovered if enabled.

4.3.6.5.1. Cached problem fact

A cached problem fact is a problem fact that does not exist in the real domain model, but is
calculated before the Solver really starts solving. The problem facts methods have the opportunity
to enrich the domain model with such cached problem facts, which can lead to simpler and faster
score constraints.

For example in examination, a cached problem fact TopicConflict is created for every two Topics
which share at least one Student.

115

 @ProblemFactCollectionProperty
 private List<TopicConflict> calculateTopicConflictList() {
 List<TopicConflict> topicConflictList = new ArrayList<TopicConflict>();
 for (Topic leftTopic : topicList) {
 for (Topic rightTopic : topicList) {
 if (leftTopic.getId() < rightTopic.getId()) {
 int studentSize = 0;
 for (Student student : leftTopic.getStudentList()) {
 if (rightTopic.getStudentList().contains(student)) {
 studentSize++;
 }
 }
 if (studentSize > 0) {
 topicConflictList.add(new TopicConflict(leftTopic, rightTopic,
studentSize));
 }
 }
 }
 }
 return topicConflictList;
 }

Where a score constraint needs to check that no two exams with a topic that shares a student are
scheduled close together (depending on the constraint: at the same time, in a row, or in the same
day), the TopicConflict instance can be used as a problem fact, rather than having to combine every
two Student instances.

4.3.6.6. Auto discover solution properties

Instead of configuring each property (or field) annotation explicitly, some can also be deduced
automatically by OptaPlanner. For example, on the cloud balancing example:

@PlanningSolution(autoDiscoverMemberType = AutoDiscoverMemberType.FIELD)
public class CloudBalance {

 // Auto discovered as @ProblemFactCollectionProperty
 @ValueRangeProvider(id = "computerRange") // Not (yet) auto discovered
 private List<CloudComputer> computerList;

 // Auto discovered as @PlanningEntityCollectionProperty
 private List<CloudProcess> processList;

 // Auto discovered as @PlanningScore
 private HardSoftScore score;

 ...
}

116

The AutoDiscoverMemberType can be:

• NONE: No auto discovery.

• FIELD: Auto discover all fields on the @PlanningSolution class

• GETTER: Auto discover all getters on the @PlanningSolution class

The automatic annotation is based on the field type (or getter return type):

• @ProblemFactProperty: when it isn’t a Collection, an array, a @PlanningEntity class or a Score

• @ProblemFactCollectionProperty: when it’s a Collection (or array) of a type that isn’t a
@PlanningEntity class

• @PlanningEntityProperty: when it is a configured @PlanningEntity class or subclass

• @PlanningEntityCollectionProperty: when it’s a Collection (or array) of a type that is a
configured @PlanningEntity class or subclass

• @PlanningScore: when it is a Score or subclass

These automatic annotation can still be overwritten per field (or getter). Specifically, a
BendableScore always needs to override with an explicit @PlanningScore annotation to define the
number of hard and soft levels.

4.3.6.7. Cloning a solution

Most (if not all) optimization algorithms clone the solution each time they encounter a new best
solution (so they can recall it later) or to work with multiple solutions in parallel.

There are many ways to clone, such as a shallow clone, deep clone, … This context
focuses on a planning clone.

A planning clone of a solution must fulfill these requirements:

• The clone must represent the same planning problem. Usually it reuses the same instances of
the problem facts and problem fact collections as the original.

• The clone must use different, cloned instances of the entities and entity collections. Changes to
an original solution entity’s variables must not affect its clone.

117

Implementing a planning clone method is hard, therefore you do not need to implement it.

4.3.6.7.1. FieldAccessingSolutionCloner

This SolutionCloner is used by default. It works well for most use cases.

When the FieldAccessingSolutionCloner clones one of your collections or maps, it
may not recognize the implementation and replace it with ArrayList,
LinkedHashSet, TreeSet, LinkedHashMap or TreeMap (whichever is more applicable) . It
recognizes most of the common JDK collection and map implementations.

The FieldAccessingSolutionCloner does not clone problem facts by default. If any of your problem
facts needs to be deep cloned for a planning clone, for example if the problem fact references a
planning entity or the planning solution, mark its class with a @DeepPlanningClone annotation:

@DeepPlanningClone
public class SeatDesignationDependency {
 private SeatDesignation leftSeatDesignation; // planning entity
 private SeatDesignation rightSeatDesignation; // planning entity
 ...
}

In the example above, because SeatDesignationDependency references the planning entity

118

SeatDesignation (which is deep planning cloned automatically), it should also be deep planning
cloned.

Alternatively, the @DeepPlanningClone annotation also works on a getter method or a field to
planning clone it. If that property is a Collection or a Map, it will shallow clone it and deep planning
clone any element thereof that is an instance of a class that has a @DeepPlanningClone annotation.

4.3.6.7.2. Custom cloning with a SolutionCloner

To use a custom cloner, configure it on the planning solution:

@PlanningSolution(solutionCloner = NQueensSolutionCloner.class)
public class NQueens {
 ...
}

For example, a NQueens planning clone only deep clones all Queen instances. So when the original
solution changes (later on during planning) and one or more Queen instances change, the planning
clone isn’t affected.

public class NQueensSolutionCloner implements SolutionCloner<NQueens> {

 @Override
 public NQueens cloneSolution(CloneLedger ledger, NQueens original) {
 NQueens clone = new NQueens();
 ledger.registerClone(original, clone);
 clone.setId(original.getId());
 clone.setN(original.getN());
 clone.setColumnList(original.getColumnList());
 clone.setRowList(original.getRowList());
 List<Queen> queenList = original.getQueenList();
 List<Queen> clonedQueenList = new ArrayList<Queen>(queenList.size());
 for (Queen originalQueen : queenList) {
 Queen cloneQueen = new Queen();
 ledger.registerClone(originalQueen, cloneQueen);
 cloneQueen.setId(originalQueen.getId());
 cloneQueen.setColumn(originalQueen.getColumn());
 cloneQueen.setRow(originalQueen.getRow());
 clonedQueenList.add(cloneQueen);
 }
 clone.setQueenList(clonedQueenList);
 clone.setScore(original.getScore());
 return clone;
 }

}

The cloneSolution() method should only deep clone the planning entities. Notice that the problem

119

facts, such as Column and Row are normally not cloned: even their List instances are not cloned. If the
problem facts were cloned too, then you would have to make sure that the new planning entity
clones also refer to the new problem facts clones used by the cloned solution. For example, if you
were to clone all Row instances, then each Queen clone and the NQueens clone itself should refer to
those new Row clones.

Cloning an entity with a chained variable is devious: a variable of an entity A
might point to another entity B. If A is cloned, then its variable must point to the
clone of B, not the original B.

4.3.6.8. Create an uninitialized solution

Create a @PlanningSolution instance to represent your planning problem’s dataset, so it can be set
on the Solver as the planning problem to solve. For example in n queens, an NQueens instance is
created with the required Column and Row instances and every Queen set to a different column and
every row set to null.

 private NQueens createNQueens(int n) {
 NQueens nQueens = new NQueens();
 nQueens.setId(0L);
 nQueens.setN(n);
 nQueens.setColumnList(createColumnList(nQueens));
 nQueens.setRowList(createRowList(nQueens));
 nQueens.setQueenList(createQueenList(nQueens));
 return nQueens;
 }

 private List<Queen> createQueenList(NQueens nQueens) {
 int n = nQueens.getN();
 List<Queen> queenList = new ArrayList<Queen>(n);
 long id = 0L;
 for (Column column : nQueens.getColumnList()) {
 Queen queen = new Queen();
 queen.setId(id);
 id++;
 queen.setColumn(column);
 // Notice that we leave the PlanningVariable properties on null
 queenList.add(queen);
 }
 return queenList;
 }

120

Figure 4. Uninitialized Solution for the Four Queens Puzzle

Usually, most of this data comes from your data layer, and your solution implementation just
aggregates that data and creates the uninitialized planning entity instances to plan:

 private void createLectureList(CourseSchedule schedule) {
 List<Course> courseList = schedule.getCourseList();
 List<Lecture> lectureList = new ArrayList<Lecture>(courseList.size());
 long id = 0L;
 for (Course course : courseList) {
 for (int i = 0; i < course.getLectureSize(); i++) {
 Lecture lecture = new Lecture();
 lecture.setId(id);
 id++;
 lecture.setCourse(course);
 lecture.setLectureIndexInCourse(i);
 // Notice that we leave the PlanningVariable properties (period
and room) on null
 lectureList.add(lecture);
 }
 }
 schedule.setLectureList(lectureList);
 }

4.4. Use the Solver

4.4.1. The Solver interface

A Solver solves your planning problem.

public interface Solver<Solution_> {

 Solution_ solve(Solution_ problem);

 ...
}

A Solver can only solve one planning problem instance at a time. It is built with a SolverFactory,
there is no need to implement it yourself.

121

A Solver should only be accessed from a single thread, except for the methods that are specifically
documented in javadoc as being thread-safe. The solve() method hogs the current thread. This can
cause HTTP timeouts for REST services and it requires extra code to solve multiple datasets in
parallel. To avoid such issues, use a SolverManager instead.

4.4.2. Solving a problem

Solving a problem is quite easy once you have:

• A Solver built from a solver configuration

• A @PlanningSolution that represents the planning problem instance

Just provide the planning problem as argument to the solve() method and it will return the best
solution found:

 NQueens problem = ...;
 NQueens bestSolution = solver.solve(problem);

For example in n queens, the solve() method will return an NQueens instance with every Queen
assigned to a Row.

Figure 5. Best Solution for the Four Queens Puzzle in 8ms (Also an Optimal Solution)

The solve(Solution) method can take a long time (depending on the problem size and the solver
configuration). The Solver intelligently wades through the search space of possible solutions and
remembers the best solution it encounters during solving. Depending on a number of factors
(including problem size, how much time the Solver has, the solver configuration, …), that best
solution might or might not be an optimal solution.

The solution instance given to the method solve(solution) is changed by the
Solver, but do not mistake it for the best solution.

The solution instance returned by the methods solve(solution) or
getBestSolution() is most likely a planning clone of the instance given to the
method solve(solution), which implies it is a different instance.

The solution instance given to the solve(Solution) method does not need to be
uninitialized. It can be partially or fully initialized, which is often the case in
repeated planning.

122

4.4.3. Environment mode: are there bugs in my code?

The environment mode allows you to detect common bugs in your implementation. It does not
affect the logging level.

You can set the environment mode in the solver configuration XML file:

<solver>
 <environmentMode>FAST_ASSERT</environmentMode>
 ...
</solver>

A solver has a single Random instance. Some solver configurations use the Random instance a lot more
than others. For example, Simulated Annealing depends highly on random numbers, while Tabu
Search only depends on it to deal with score ties. The environment mode influences the seed of that
Random instance.

These are the environment modes:

4.4.3.1. FULL_ASSERT

The FULL_ASSERT mode turns on all assertions (such as assert that the incremental score
calculation is uncorrupted for each move) to fail-fast on a bug in a Move implementation, a score
rule, the rule engine itself, …

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the
method calculateScore() more frequently than a non-assert mode.

The FULL_ASSERT mode is horribly slow (because it does not rely on incremental score
calculation).

4.4.3.2. NON_INTRUSIVE_FULL_ASSERT

The NON_INTRUSIVE_FULL_ASSERT turns on several assertions to fail-fast on a bug in a Move
implementation, a score rule, the rule engine itself, …

This mode is reproducible (see the reproducible mode). It is non-intrusive because it does not call
the method calculateScore() more frequently than a non assert mode.

The NON_INTRUSIVE_FULL_ASSERT mode is horribly slow (because it does not rely on incremental
score calculation).

4.4.3.3. FAST_ASSERT

The FAST_ASSERT mode turns on most assertions (such as assert that an undoMove’s score is the
same as before the Move) to fail-fast on a bug in a Move implementation, a score rule, the rule
engine itself, …

This mode is reproducible (see the reproducible mode). It is also intrusive because it calls the
method calculateScore() more frequently than a non assert mode.

123

The FAST_ASSERT mode is slow.

It is recommended to write a test case that does a short run of your planning problem with the
FAST_ASSERT mode on.

4.4.3.4. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In this
mode, two runs in the same OptaPlanner version will execute the same code in the same order.
Those two runs will have the same result at every step, except if the note below applies. This
enables you to reproduce bugs consistently. It also allows you to benchmark certain refactorings
(such as a score constraint performance optimization) fairly across runs.

Despite the reproducible mode, your application might still not be fully
reproducible because of:

• Use of HashSet (or another Collection which has an inconsistent order between
JVM runs) for collections of planning entities or planning values (but not
normal problem facts), especially in the solution implementation. Replace it
with LinkedHashSet.

• Combining a time gradient dependent algorithms (most notably Simulated
Annealing) together with time spent termination. A sufficiently large
difference in allocated CPU time will influence the time gradient values.
Replace Simulated Annealing with Late Acceptance. Or instead, replace time
spent termination with step count termination.

The reproducible mode can be slightly slower than the non-reproducible mode. If your production
environment can benefit from reproducibility, use this mode in production.

In practice, this mode uses the default, fixed random seed if no seed is specified, and it also disables
certain concurrency optimizations (such as work stealing).

4.4.3.5. NON_REPRODUCIBLE

The non-reproducible mode can be slightly faster than the reproducible mode. Avoid using it
during development as it makes debugging and bug fixing painful. If your production environment
doesn’t care about reproducibility, use this mode in production.

In practice, this mode uses no fixed random seed if no seed is specified.

4.4.4. Logging level: what is the Solver doing?

The best way to illuminate the black box that is a Solver, is to play with the logging level:

• error: Log errors, except those that are thrown to the calling code as a RuntimeException.

124

If an error happens, OptaPlanner normally fails fast: it throws a subclass of
RuntimeException with a detailed message to the calling code. It does not log it
as an error itself to avoid duplicate log messages. Except if the calling code
explicitly catches and eats that RuntimeException, a Thread's default
ExceptionHandler will log it as an error anyway. Meanwhile, the code is
disrupted from doing further harm or obfuscating the error.

• warn: Log suspicious circumstances.

• info: Log every phase and the solver itself. See scope overview.

• debug: Log every step of every phase. See scope overview.

• trace: Log every move of every step of every phase. See scope overview.

Turning on trace logging, will slow down performance considerably: it is often
four times slower. However, it is invaluable during development to discover a
bottleneck.

Even debug logging can slow down performance considerably for fast stepping
algorithms (such as Late Acceptance and Simulated Annealing), but not for slow
stepping algorithms (such as Tabu Search).

Both cause congestion in multithreaded solving with most appenders, see below.

In Eclipse, debug logging to the console tends to cause congestion with a score
calculation speeds above 10 000 per second. Nor IntelliJ, nor the Maven command
line suffer from this problem.

For example, set it to debug logging, to see when the phases end and how fast steps are taken:

125

INFO Solving started: time spent (3), best score (-4init/0), random (JDK with seed
0).
DEBUG CH step (0), time spent (5), score (-3init/0), selected move count (1),
picked move (Queen-2 {null -> Row-0}).
DEBUG CH step (1), time spent (7), score (-2init/0), selected move count (3),
picked move (Queen-1 {null -> Row-2}).
DEBUG CH step (2), time spent (10), score (-1init/0), selected move count (4),
picked move (Queen-3 {null -> Row-3}).
DEBUG CH step (3), time spent (12), score (-1), selected move count (4), picked
move (Queen-0 {null -> Row-1}).
INFO Construction Heuristic phase (0) ended: time spent (12), best score (-1), score
calculation speed (9000/sec), step total (4).
DEBUG LS step (0), time spent (19), score (-1), best score (-1),
accepted/selected move count (12/12), picked move (Queen-1 {Row-2 -> Row-3}).
DEBUG LS step (1), time spent (24), score (0), new best score (0),
accepted/selected move count (9/12), picked move (Queen-3 {Row-3 -> Row-2}).
INFO Local Search phase (1) ended: time spent (24), best score (0), score calculation
speed (4000/sec), step total (2).
INFO Solving ended: time spent (24), best score (0), score calculation speed
(7000/sec), phase total (2), environment mode (REPRODUCIBLE).

All time spent values are in milliseconds.

Everything is logged to SLF4J, which is a simple logging facade which delegates every log message
to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a dependency to the logging
adaptor for your logging framework of choice.

If you are not using any logging framework yet, use Logback by adding this Maven dependency
(there is no need to add an extra bridge dependency):

 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.x</version>
 </dependency>

Configure the logging level on the org.optaplanner package in your logback.xml file:

<configuration>

 <logger name="org.optaplanner" level="debug"/>

 ...

</configuration>

If it isn’t picked up, temporarily add the system property -Dlogback.debug=true to figure out why.

126

http://www.slf4j.org/

When running multiple solvers or one multithreaded solver, most appenders
(including the console) cause congestion with debug and trace logging. Switch to an
async appender to avoid this problem or turn off debug logging.

If instead, you are still using Log4J 1.x (and you do not want to switch to its faster successor,
Logback), add the bridge dependency:

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.x</version>
 </dependency>

And configure the logging level on the package org.optaplanner in your log4j.xml file:

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <category name="org.optaplanner">
 <priority value="debug" />
 </category>

 ...

</log4j:configuration>

127

In a multitenant application, multiple Solver instances might be running at the
same time. To separate their logging into distinct files, surround the solve() call
with an MDC:

 MDC.put("tenant.name",tenantName);
 MySolution bestSolution = solver.solve(problem);
 MDC.remove("tenant.name");

Then configure your logger to use different files for each ${tenant.name}. For
example in Logback, use a SiftingAppender in logback.xml:

 <appender name="fileAppender" class=
"ch.qos.logback.classic.sift.SiftingAppender">
 <discriminator>
 <key>tenant.name</key>
 <defaultValue>unknown</defaultValue>
 </discriminator>
 <sift>
 <appender name="fileAppender.${tenant.name}" class=
"...FileAppender">
 <file>local/log/optaplanner-${tenant.name}.log</file>
 ...
 </appender>
 </sift>
 </appender>

4.4.5. Random number generator

Many heuristics and metaheuristics depend on a pseudorandom number generator for move
selection, to resolve score ties, probability based move acceptance, … During solving, the same
Random instance is reused to improve reproducibility, performance and uniform distribution of
random values.

To change the random seed of that Random instance, specify a randomSeed:

<solver>
 <randomSeed>0</randomSeed>
 ...
</solver>

To change the pseudorandom number generator implementation, specify a randomType:

128

http://logback.qos.ch/manual/mdc.html

<solver>
 <randomType>MERSENNE_TWISTER</randomType>
 ...
</solver>

The following types are supported:

• JDK (default): Standard implementation (java.util.Random).

• MERSENNE_TWISTER: Implementation by Commons Math.

• WELL512A, WELL1024A, WELL19937A, WELL19937C, WELL44497A and WELL44497B: Implementation by
Commons Math.

For most use cases, the randomType has no significant impact on the average quality of the best
solution on multiple datasets. If you want to confirm this on your use case, use the benchmarker.

4.5. SolverManager
A SolverManager is a facade for one or more Solver instances to simplify solving planning problems
in REST and other enterprise services. Its solve(…) methods differ from the normal Solver.solve(…
) method:

• SolverManager.solve(…) returns immediately: it schedules a problem for asynchronous
solving without blocking the calling thread. This avoids timeout issues of HTTP and other
technologies.

• SolverManager.solve(…) solves multiple planning problems of the same domain, in parallel.

Internally a SolverManager manages a thread pool of solver threads, which call Solver.solve(…),
and a thread pool of consumer threads, which handle best solution changed events.

In Quarkus and Spring Boot, the SolverManager instance is automatically injected in your code.
Otherwise, build a SolverManager instance with the create(…) method:

SolverConfig solverConfig = SolverConfig.createFromXmlResource(
".../cloudBalancingSolverConfig.xml");
SolverManager<CloudBalance, UUID> solverManager = SolverManager.create(solverConfig,
new SolverManagerConfig());

Each problem submitted to the SolverManager.solve(…) methods needs a unique problem ID. Later
calls to getSolverStatus(problemId) or terminateEarly(problemId) use that problem ID to distinguish
between the planning problems. The problem ID must be an immutable class, such as Long, String
or java.util.UUID.

The SolverManagerConfig class has a parallelSolverCount property, that controls how many solvers
are run in parallel. For example, if set to 4, submitting five problems has four problems solving
immediately, and the fifth one starts when another one ends. If those problems solve for 5 minutes
each, the fifth problem takes 10 minutes to finish. By default, parallelSolverCount is set to AUTO,

129

http://commons.apache.org/proper/commons-math/userguide/random.html
http://commons.apache.org/proper/commons-math/userguide/random.html

which resolves to half the CPU cores, regardless of the moveThreadCount of the solvers.

To retrieve the best solution, after solving terminates normally, use
SolverJob.getFinalBestSolution():

CloudBalance problem1 = ...;
UUID problemId = UUID.randomUUID();
// Returns immediately
SolverJob<CloudBalance, UUID> solverJob = solverManager.solve(problemId, problem1);
...
CloudBalance solution1;
try {
 // Returns only after solving terminates
 solution1 = solverJob.getFinalBestSolution();
} catch (InterruptedException | ExecutionException e) {
 throw ...;
}

However, there are better approaches, both for solving batch problems before an end-user needs
the solution as well as for live solving while an end-user is actively waiting for the solution, as
explained below.

The current SolverManager implementation runs on a single computer node, but future work aims to
distribute solver loads across a cloud.

4.5.1. Solve batch problems

At night, batch solving is a great approach to deliver solid plans by breakfast, because:

• There are typically few or no problem changes in the middle of the night. Some organizations
even enforce a deadline, for example, submit all day off requests before midnight.

• The solvers can run for much longer, often hours, because nobody’s waiting for it and CPU
resources are often cheaper.

To solve a multiple datasets in parallel (limited by parallelSolverCount), call solve(…) for each
dataset:

130

public class TimeTableService {

 private SolverManager<TimeTable, Long> solverManager;

 // Returns immediately, call it for every dataset
 public void solveBatch(Long timeTableId) {
 solverManager.solve(timeTableId,
 // Called once, when solving starts
 this::findById,
 // Called once, when solving ends
 this::save);
 }

 public TimeTable findById(Long timeTableId) {...}

 public void save(TimeTable timeTable) {...}

}

A solid plan delivered by breakfast is great, even if you need to react on problem changes during
the day.

4.5.2. Solve and listen to show progress to the end-user

When a solver is running while an end-user is waiting for that solution, the user might need to wait
for several minutes or hours before receiving a result. To assure the user that everything is going
well, show progress by displaying the best solution and best score attained so far.

To handle intermediate best solutions, use solveAndListen(…):

131

public class TimeTableService {

 private SolverManager<TimeTable, Long> solverManager;

 // Returns immediately
 public void solveLive(Long timeTableId) {
 solverManager.solveAndListen(timeTableId,
 // Called once, when solving starts
 this::findById,
 // Called multiple times, for every best solution change
 this::save);
 }

 public TimeTable findById(Long timeTableId) {...}

 public void save(TimeTable timeTable) {...}

 public void stopSolving(Long timeTableId) {
 solverManager.terminateEarly(timeTableId);
 }

}

This implementation is using the database to communicate with the UI, which polls the database.
More advanced implementations push the best solutions directly to the UI or a messaging queue.

If the user is satisfied with the intermediate best solution and does not want to wait any longer for
a better one, call SolverManager.terminateEarly(problemId).

132

Chapter 5. Score calculation

5.1. Score terminology

5.1.1. What is a score?

Every @PlanningSolution class has a score. The score is an objective way to compare two solutions.
The solution with the higher score is better. The Solver aims to find the solution with the highest
Score of all possible solutions. The best solution is the solution with the highest Score that Solver has
encountered during solving, which might be the optimal solution.

OptaPlanner cannot automatically know which solution is best for your business, so you need to
tell it how to calculate the score of a given @PlanningSolution instance according to your business
needs. If you forget or are unable to implement an important business constraint, the solution is
probably useless:

5.1.2. Formalize the business constraints

To implement a verbal business constraint, it needs to be formalized as a score constraint. Luckily,
defining constraints in OptaPlanner is very flexible through the following score techniques:

• Score signum (positive or negative): maximize or minimize a constraint type

133

• Score weight: put a cost/profit on a constraint type

• Score level (hard, soft, …): prioritize a group of constraint types

• Pareto scoring (rarely used)

Take the time to acquaint yourself with the first three techniques. Once you understand them,
formalizing most business constraints becomes straightforward.

Do not presume that your business knows all its score constraints in advance.
Expect score constraints to be added, changed or removed after the first releases.

5.1.3. Score constraint signum (positive or negative)

All score techniques are based on constraints. A constraint can be a simple pattern (such as
Maximize the apple harvest in the solution) or a more complex pattern. A positive constraint is a
constraint you want to maximize. A negative constraint is a constraint you want to minimize

The image above illustrates that the optimal solution always has the highest score, regardless if
the constraints are positive or negative.

Most planning problems have only negative constraints and therefore have a negative score. In that
case, the score is the sum of the weight of the negative constraints being broken, with a perfect
score of 0. For example in n queens, the score is the negative of the number of queen pairs which
can attack each other.

134

Negative and positive constraints can be combined, even in the same score level.

When a constraint activates (because the negative constraint is broken or the positive constraint is
fulfilled) on a certain planning entity set, it is called a constraint match.

5.1.4. Score constraint weight

Not all score constraints are equally important. If breaking one constraint is equally bad as
breaking another constraint x times, then those two constraints have a different weight (but they
are in the same score level). For example in vehicle routing, you can make one unhappy driver
constraint match count as much as two fuel tank usage constraint matches:

Score weighting is easy in use cases where you can put a price tag on everything. In that case, the
positive constraints maximize revenue and the negative constraints minimize expenses, so together
they maximize profit. Alternatively, score weighting is also often used to create social fairness. For
example, a nurse, who requests a free day, pays a higher weight on New Years eve than on a normal
day.

The weight of a constraint match can depend on the planning entities involved. For example in
cloud balancing, the weight of the soft constraint match for an active Computer is the maintenance
cost of that Computer (which differs per computer).

Putting a good weight on a constraint is often a difficult analytical decision, because it is about
making choices and trade-offs against other constraints. Different stakeholders have different

135

priorities. Don’t waste time with constraint weight discussions at the start of an
implementation, instead add a constraint configuration and allow users to change them
through a UI. A non-accurate weight is less damaging than mediocre algorithms:

Most use cases use a Score with int weights, such as HardSoftScore.

5.1.5. Score constraint level (hard, soft, …)

Sometimes a score constraint outranks another score constraint, no matter how many times the
latter is broken. In that case, those score constraints are in different levels. For example, a nurse
cannot do two shifts at the same time (due to the constraints of physical reality), so this outranks all
nurse happiness constraints.

Most use cases have only two score levels, hard and soft. The levels of two scores are compared
lexicographically. The first score level gets compared first. If those differ, the remaining score levels
are ignored. For example, a score that breaks 0 hard constraints and 1000000 soft constraints is
better than a score that breaks 1 hard constraint and 0 soft constraints.

136

If there are two (or more) score levels, for example HardSoftScore, then a score is feasible if no hard
constraints are broken.

By default, OptaPlanner will always assign all planning variables a planning value.
If there is no feasible solution, this means the best solution will be infeasible. To
instead leave some of the planning entities unassigned, apply overconstrained
planning.

For each constraint, you need to pick a score level, a score weight and a score signum. For example:
-1soft which has score level of soft, a weight of 1 and a negative signum. Do not use a big
constraint weight when your business actually wants different score levels. That hack, known as
score folding, is broken:

137

Your business might tell you that your hard constraints all have the same weight,
because they cannot be broken (so the weight does not matter). This is not true
because if no feasible solution exists for a specific dataset, the least infeasible
solution allows the business to estimate how many business resources they are
lacking. For example in cloud balancing, how many new computers to buy.

Furthermore, it will likely create a score trap. For example in cloud balance if a
Computer has seven CPU too little for its Processes, then it must be weighted seven
times as much as if it had only one CPU too little.

Three or more score levels are also supported. For example: a company might decide that profit
outranks employee satisfaction (or vice versa), while both are outranked by the constraints of
physical reality.

To model fairness or load balancing, there is no need to use lots of score levels
(even though OptaPlanner can handle many score levels).

Most use cases use a Score with two or three weights, such as HardSoftScore and
HardMediumSoftScore.

5.1.6. Pareto scoring (AKA multi-objective optimization scoring)

Far less common is the use case of pareto optimization, which is also known as multi-objective

138

optimization. In pareto scoring, score constraints are in the same score level, yet they are not
weighted against each other. When two scores are compared, each of the score constraints are
compared individually and the score with the most dominating score constraints wins. Pareto
scoring can even be combined with score levels and score constraint weighting.

Consider this example with positive constraints, where we want to get the most apples and oranges.
Since it is impossible to compare apples and oranges, we can not weigh them against each other.
Yet, despite that we can not compare them, we can state that two apples are better than one apple.
Similarly, we can state that two apples and one orange are better than just one orange. So despite
our inability to compare some Scores conclusively (at which point we declare them equal), we can
find a set of optimal scores. Those are called pareto optimal.

Scores are considered equal far more often. It is left up to a human to choose the better out of a set
of best solutions (with equal scores) found by OptaPlanner. In the example above, the user must
choose between solution A (three apples and one orange) and solution B (one apple and six
oranges). It is guaranteed that OptaPlanner has not found another solution which has more apples
or more oranges or even a better combination of both (such as two apples and three oranges).

To implement pareto scoring in OptaPlanner, implement a custom ScoreDefinition and Score (and
replace the BestSolutionRecaller). Future versions will provide out-of-the-box support.

139

A pareto Score's compareTo method is not transitive because it does a pareto
comparison. For example: having two apples is greater than one apple. One apple
is equal to One orange. Yet, two apples are not greater than one orange (but
actually equal). Pareto comparison violates the contract of the interface
java.lang.Comparable's compareTo method, but Planners systems are pareto
comparison safe, unless explicitly stated otherwise in this documentation.

5.1.7. Combining score techniques

All the score techniques mentioned above, can be combined seamlessly:

5.1.8. Score interface

A score is represented by the Score interface, which naturally extends Comparable:

public interface Score<...> extends Comparable<...> {
 ...
}

The Score implementation to use depends on your use case. Your score might not efficiently fit in a
single long value. OptaPlanner has several built-in Score implementations, but you can implement a
custom Score too. Most use cases tend to use the built-in HardSoftScore.

140

All Score implementations also have an initScore (which is an int). It is mostly intended for
internal use in OptaPlanner: it is the negative number of uninitialized planning variables. From a
user’s perspective this is 0, unless a Construction Heuristic is terminated before it could initialize all
planning variables (in which case Score.isSolutionInitialized() returns false).

The Score implementation (for example HardSoftScore) must be the same throughout a Solver
runtime. The Score implementation is configured in the solution domain class:

@PlanningSolution
public class CloudBalance {
 ...

 @PlanningScore
 private HardSoftScore score;

}

5.1.9. Avoid floating point numbers in score calculation

Avoid the use of float or double in score calculation. Use BigDecimal or scaled long instead.

Floating point numbers (float and double) cannot represent a decimal number correctly. For
example: a double cannot hold the value 0.05 correctly. Instead, it holds the nearest representable

141

value. Arithmetic (including addition and subtraction) with floating point numbers, especially for
planning problems, leads to incorrect decisions:

Additionally, floating point number addition is not associative:

System.out.println(((0.01 + 0.02) + 0.03) == (0.01 + (0.02 + 0.03))); // returns
false

This leads to score corruption.

Decimal numbers (BigDecimal) have none of these problems.

BigDecimal arithmetic is considerably slower than int, long or double arithmetic.
In experiments we have seen the score calculation take five times longer.

Therefore, in many cases, it can be worthwhile to multiply all numbers for a single
score weight by a plural of ten, so the score weight fits in a scaled int or long. For
example, if we multiply all weights by 1000, a fuelCost of 0.07 becomes a
fuelCostMillis of 70 and no longer uses a decimal score weight.

142

5.2. Choose a score type
Depending on the number of score levels and type of score weights you need, choose a Score type.
Most use cases use a HardSoftScore.

To properly write a Score to a database (with JPA/Hibernate) or to XML/JSON (with
XStream/JAXB/Jackson), see the integration chapter.

5.2.1. SimpleScore

A SimpleScore has a single int value, for example -123. It has a single score level.

 @PlanningScore
 private SimpleScore score;

Variants of this Score type:

• SimpleLongScore uses a long value instead of an int value.

• SimpleDoubleScore uses a double value instead of an int value. Not recommended to use.

• SimpleBigDecimalScore uses a BigDecimal value instead of an int value.

5.2.2. HardSoftScore (Recommended)

A HardSoftScore has a hard int value and a soft int value, for example -123hard/-456soft. It has two
score levels (hard and soft).

 @PlanningScore
 private HardSoftScore score;

Variants of this Score type:

• HardSoftLongScore uses long values instead of int values.

• HardSoftDoubleScore uses double values instead of int values. Not recommended to use.

• HardSoftBigDecimalScore uses BigDecimal values instead of int values.

5.2.3. HardMediumSoftScore

A HardMediumSoftScore which has a hard int value, a medium int value and a soft int value, for
example -123hard/-456medium/-789soft. It has three score levels (hard, medium and soft). The hard
level determines if the solution is feasible, and the medium level and soft level score values
determine how well the solution meets business goals. Higher medium values take precedence over
soft values irrespective of the soft value.

143

 @PlanningScore
 private HardMediumSoftScore score;

Variants of this Score type:

• HardMediumSoftLongScore uses long values instead of int values.

• HardMediumSoftBigDecimalScore uses BigDecimal values instead of int values.

5.2.4. BendableScore

A BendableScore has a configurable number of score levels. It has an array of hard int values and an
array of soft int values, for example with two hard levels and three soft levels, the score can be [-
123/-456]hard/[-789/-012/-345]soft. In that case, it has five score levels. A solution is feasible if all
hard levels are at least zero.

A BendableScore with one hard level and one soft level is equivalent to a HardSoftScore, while a
BendableScore with one hard level and two soft levels is equivalent to a HardMediumSoftScore.

 @PlanningScore(bendableHardLevelsSize = 2, bendableSoftLevelsSize = 3)
 private BendableScore score;

The number of hard and soft score levels need to be set at compilation time. It is not flexible to
change during solving.

Do not use a BendableScore with seven levels just because you have seven
constraints. It is extremely rare to use a different score level for each constraint,
because that means one constraint match on soft 0 outweighs even a million
constraint matches of soft 1.

Usually, multiple constraints share the same level and are weighted against each
other. Use explaining the score to get the weight of individual constraints in the
same level.

Variants of this Score type:

• BendableLongScore uses long values instead of int values.

• BendableBigDecimalScore uses BigDecimal values instead of int values.

5.2.5. Implementing a custom score

Internally, each Score implementation also has a ScoreDefinition implementation. For example:
SimpleScore is defined by SimpleScoreDefinition. The ScoreDefinition interface defines the score
representation.

To implement a custom Score, also implement such a custom ScoreDefinition. Extend
AbstractScoreDefinition (preferably by copy pasting HardSoftScoreDefinition) and start from there.

144

Then hook your custom ScoreDefinition in the domain:

 @PlanningScore(scoreDefinitionClass = MyCustomScoreDefinition.class)
 private MyCustomScore score;

To have it integrate seamlessly with JPA/Hibernate, XStream, Jackson, …, you’ll need to write
custom glue code too.

5.3. Calculate the Score

5.3.1. Score calculation types

There are several ways to calculate the Score of a solution:

• Easy Java score calculation: Implement all constraints together in a single method in Java (or
another JVM language). Does not scale.

• Constraint streams score calculation: Implement each constraint as a separate
ConstraintStream in Java (or another JVM language). Fast and scalable.

• Incremental Java score calculation (not recommended): Implement multiple low-level
methods in Java (or another JVM language). Fast and scalable. Very difficult to implement and
maintain.

• Drools score calculation: Implement each constraint as a separate score rule in DRL. Scalable.

Every score calculation type can work with any Score definition (such as HardSoftScore or
HardMediumSoftScore). All score calculation types are Object Oriented and can reuse existing Java
code.

The score calculation must be read-only. It must not change the planning entities
or the problem facts in any way. For example, it must not call a setter method on a
planning entity in the score calculation.

OptaPlanner does not recalculate the score of a solution if it can predict it (unless
an environmentMode assertion is enabled). For example, after a winning step is
done, there is no need to calculate the score because that move was done and
undone earlier. As a result, there is no guarantee that changes applied during
score calculation actually happen.

To update planning entities when the planning variable change, use shadow
variables instead.

5.3.2. Easy Java score calculation

An easy way to implement your score calculation in Java.

• Advantages:

◦ Plain old Java: no learning curve

145

◦ Opportunity to delegate score calculation to an existing code base or legacy system

• Disadvantages:

◦ Slower

◦ Does not scale because there is no incremental score calculation

Implement the one method of the interface EasyScoreCalculator:

public interface EasyScoreCalculator<Solution_> {

 Score calculateScore(Solution_ solution);

}

For example in n queens:

public class NQueensEasyScoreCalculator implements EasyScoreCalculator<NQueens> {

 public SimpleScore calculateScore(NQueens nQueens) {
 int n = nQueens.getN();
 List<Queen> queenList = nQueens.getQueenList();

 int score = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i + 1; j < n; j++) {
 Queen leftQueen = queenList.get(i);
 Queen rightQueen = queenList.get(j);
 if (leftQueen.getRow() != null && rightQueen.getRow() != null) {
 if (leftQueen.getRowIndex() == rightQueen.getRowIndex()) {
 score--;
 }
 if (leftQueen.getAscendingDiagonalIndex() == rightQueen
.getAscendingDiagonalIndex()) {
 score--;
 }
 if (leftQueen.getDescendingDiagonalIndex() == rightQueen
.getDescendingDiagonalIndex()) {
 score--;
 }
 }
 }
 }
 return SimpleScore.valueOf(score);
 }

}

Configure it in the solver configuration:

146

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensEasySco
reCalculator</easyScoreCalculatorClass>
 </scoreDirectorFactory>

To configure values of an EasyScoreCalculator dynamically in the solver configuration (so the
Benchmarker can tweak those parameters), add the easyScoreCalculatorCustomProperties element
and use custom properties:

 <scoreDirectorFactory>
 <easyScoreCalculatorClass>...MyEasyScoreCalculator</easyScoreCalculatorClass>
 <easyScoreCalculatorCustomProperties>
 <myCacheSize>1000</myCacheSize>
 </easyScoreCalculatorCustomProperties>
 </scoreDirectorFactory>

5.3.3. Incremental Java score calculation

A way to implement your score calculation incrementally in Java.

• Advantages:

◦ Very fast and scalable

▪ Currently the fastest if implemented correctly

• Disadvantages:

◦ Hard to write

▪ A scalable implementation heavily uses maps, indexes, … (things the Drools rule engine
can do for you)

▪ You have to learn, design, write and improve all these performance optimizations
yourself

◦ Hard to read

▪ Regular score constraint changes can lead to a high maintenance cost

Implement all the methods of the interface IncrementalScoreCalculator and extend the class
AbstractIncrementalScoreCalculator:

147

public interface IncrementalScoreCalculator<Solution_> {

 void resetWorkingSolution(Solution_ workingSolution);

 void beforeEntityAdded(Object entity);

 void afterEntityAdded(Object entity);

 void beforeVariableChanged(Object entity, String variableName);

 void afterVariableChanged(Object entity, String variableName);

 void beforeEntityRemoved(Object entity);

 void afterEntityRemoved(Object entity);

 Score calculateScore();

}

For example in n queens:

public class NQueensAdvancedIncrementalScoreCalculator extends

148

AbstractIncrementalScoreCalculator<NQueens> {

 private Map<Integer, List<Queen>> rowIndexMap;
 private Map<Integer, List<Queen>> ascendingDiagonalIndexMap;
 private Map<Integer, List<Queen>> descendingDiagonalIndexMap;

 private int score;

 public void resetWorkingSolution(NQueens nQueens) {
 int n = nQueens.getN();
 rowIndexMap = new HashMap<Integer, List<Queen>>(n);
 ascendingDiagonalIndexMap = new HashMap<Integer, List<Queen>>(n * 2);
 descendingDiagonalIndexMap = new HashMap<Integer, List<Queen>>(n * 2);
 for (int i = 0; i < n; i++) {
 rowIndexMap.put(i, new ArrayList<Queen>(n));
 ascendingDiagonalIndexMap.put(i, new ArrayList<Queen>(n));
 descendingDiagonalIndexMap.put(i, new ArrayList<Queen>(n));
 if (i != 0) {
 ascendingDiagonalIndexMap.put(n - 1 + i, new ArrayList<Queen>(n));
 descendingDiagonalIndexMap.put((-i), new ArrayList<Queen>(n));
 }
 }
 score = 0;
 for (Queen queen : nQueens.getQueenList()) {
 insert(queen);
 }
 }

 public void beforeEntityAdded(Object entity) {
 // Do nothing
 }

 public void afterEntityAdded(Object entity) {
 insert((Queen) entity);
 }

 public void beforeVariableChanged(Object entity, String variableName) {
 retract((Queen) entity);
 }

 public void afterVariableChanged(Object entity, String variableName) {
 insert((Queen) entity);
 }

 public void beforeEntityRemoved(Object entity) {
 retract((Queen) entity);
 }

 public void afterEntityRemoved(Object entity) {
 // Do nothing
 }

149

 private void insert(Queen queen) {
 Row row = queen.getRow();
 if (row != null) {
 int rowIndex = queen.getRowIndex();
 List<Queen> rowIndexList = rowIndexMap.get(rowIndex);
 score -= rowIndexList.size();
 rowIndexList.add(queen);
 List<Queen> ascendingDiagonalIndexList = ascendingDiagonalIndexMap.get
(queen.getAscendingDiagonalIndex());
 score -= ascendingDiagonalIndexList.size();
 ascendingDiagonalIndexList.add(queen);
 List<Queen> descendingDiagonalIndexList = descendingDiagonalIndexMap.get
(queen.getDescendingDiagonalIndex());
 score -= descendingDiagonalIndexList.size();
 descendingDiagonalIndexList.add(queen);
 }
 }

 private void retract(Queen queen) {
 Row row = queen.getRow();
 if (row != null) {
 List<Queen> rowIndexList = rowIndexMap.get(queen.getRowIndex());
 rowIndexList.remove(queen);
 score += rowIndexList.size();
 List<Queen> ascendingDiagonalIndexList = ascendingDiagonalIndexMap.get
(queen.getAscendingDiagonalIndex());
 ascendingDiagonalIndexList.remove(queen);
 score += ascendingDiagonalIndexList.size();
 List<Queen> descendingDiagonalIndexList = descendingDiagonalIndexMap.get
(queen.getDescendingDiagonalIndex());
 descendingDiagonalIndexList.remove(queen);
 score += descendingDiagonalIndexList.size();
 }
 }

 public SimpleScore calculateScore() {
 return SimpleScore.valueOf(score);
 }

}

Configure it in the solver configuration:

 <scoreDirectorFactory>

<incrementalScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueens
AdvancedIncrementalScoreCalculator</incrementalScoreCalculatorClass>
 </scoreDirectorFactory>

150

A piece of incremental score calculator code can be difficult to write and to review.
Assert its correctness by using an EasyScoreCalculator to fulfill the assertions
triggered by the environmentMode.

To configure values of an IncrementalScoreCalculator dynamically in the solver configuration (so
the Benchmarker can tweak those parameters), add the
incrementalScoreCalculatorCustomProperties element and use custom properties:

 <scoreDirectorFactory>
 <incrementalScoreCalculatorClass>
...MyIncrementalScoreCalculator</incrementalScoreCalculatorClass>
 <incrementalScoreCalculatorCustomProperties>
 <myCacheSize>1000</myCacheSize>
 </incrementalScoreCalculatorCustomProperties>
 </scoreDirectorFactory>

5.3.3.1. ConstraintMatchAwareIncrementalScoreCalculator

Optionally, also implement the ConstraintMatchAwareIncrementalScoreCalculator interface to:

• Explain a score by splitting it up per score constraint with
ScoreDirector.getConstraintMatchTotals().

• Visualize or sort planning entities by how many constraints each one breaks with
ScoreDirector.getIndictmentMap().

• Receive a detailed analysis if the IncrementalScoreCalculator is corrupted in FAST_ASSERT or
FULL_ASSERT environmentMode,

public interface ConstraintMatchAwareIncrementalScoreCalculator<Solution_> {

 void resetWorkingSolution(Solution_ workingSolution, boolean
constraintMatchEnabled);

 Collection<ConstraintMatchTotal> getConstraintMatchTotals();

 Map<Object, Indictment> getIndictmentMap();
}

For example in machine reassignment, create one ConstraintMatchTotal per constraint type and
call addConstraintMatch() for each constraint match:

151

public class MachineReassignmentIncrementalScoreCalculator
 implements ConstraintMatchAwareIncrementalScoreCalculator<MachineReassignment>
{
 ...

 @Override
 public void resetWorkingSolution(MachineReassignment workingSolution, boolean
constraintMatchEnabled) {
 resetWorkingSolution(workingSolution);
 // ignore constraintMatchEnabled, it is always presumed enabled
 }

 @Override
 public Collection<ConstraintMatchTotal> getConstraintMatchTotals() {
 ConstraintMatchTotal maximumCapacityMatchTotal = new ConstraintMatchTotal(
 CONSTRAINT_PACKAGE, "maximumCapacity", HardSoftLongScore.ZERO);
 ...
 for (MrMachineScorePart machineScorePart : machineScorePartMap.values()) {
 for (MrMachineCapacityScorePart machineCapacityScorePart :
machineScorePart.machineCapacityScorePartList) {
 if (machineCapacityScorePart.maximumAvailable < 0L) {
 maximumCapacityMatchTotal.addConstraintMatch(
 Arrays.asList(machineCapacityScorePart.machineCapacity),
 HardSoftLongScore.valueOf(machineCapacityScorePart
.maximumAvailable, 0));
 }
 }
 }
 ...
 List<ConstraintMatchTotal> constraintMatchTotalList = new ArrayList<>(4);
 constraintMatchTotalList.add(maximumCapacityMatchTotal);
 ...
 return constraintMatchTotalList;
 }

 @Override
 public Map<Object, Indictment> getIndictmentMap() {
 return null; // Calculate it non-incrementally from getConstraintMatchTotals()
 }
}

That getConstraintMatchTotals() code often duplicates some of the logic of the normal
IncrementalScoreCalculator methods. Drools Score Calculation doesn’t have this disadvantage,
because it is constraint match aware automatically when needed, without any extra domain-
specific code.

5.3.4. InitializingScoreTrend

The InitializingScoreTrend specifies how the Score will change as more and more variables are

152

initialized (while the already initialized variables do not change). Some optimization algorithms
(such Construction Heuristics and Exhaustive Search) run faster if they have such information.

For the Score (or each score level separately), specify a trend:

• ANY (default): Initializing an extra variable can change the score positively or negatively. Gives
no performance gain.

• ONLY_UP (rare): Initializing an extra variable can only change the score positively. Implies that:

◦ There are only positive constraints

◦ And initializing the next variable can not unmatch a positive constraint that was matched
by a previous initialized variable.

• ONLY_DOWN: Initializing an extra variable can only change the score negatively. Implies that:

◦ There are only negative constraints

◦ And initializing the next variable can not unmatch a negative constraint that was matched
by a previous initialized variable.

Most use cases only have negative constraints. Many of those have an InitializingScoreTrend that
only goes down:

 <scoreDirectorFactory>
 <scoreDrl>.../cloudBalancingScoreRules.drl</scoreDrl>
 <initializingScoreTrend>ONLY_DOWN</initializingScoreTrend>
 </scoreDirectorFactory>

Alternatively, you can also specify the trend for each score level separately:

 <scoreDirectorFactory>
 <scoreDrl>.../cloudBalancingScoreRules.drl</scoreDrl>
 <initializingScoreTrend>ONLY_DOWN/ONLY_DOWN</initializingScoreTrend>
 </scoreDirectorFactory>

5.3.5. Invalid score detection

When you put the environmentMode in FULL_ASSERT (or FAST_ASSERT), it will detect score corruption in
the incremental score calculation. However, that will not verify that your score calculator actually
implements your score constraints as your business desires. For example, one score rule might
consistently match the wrong pattern. To verify the score rules against an independent
implementation, configure a assertionScoreDirectorFactory:

153

 <environmentMode>FAST_ASSERT</environmentMode>
 ...
 <scoreDirectorFactory>
 <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
 <assertionScoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.nqueens.solver.score.NQueensEasySco
reCalculator</easyScoreCalculatorClass>
 </assertionScoreDirectorFactory>
 </scoreDirectorFactory>

This way, the scoreDrl will be validated by the EasyScoreCalculator.

This works well to isolate score corruption, but to verify that the score rules
implement the real business needs, a unit test with a ScoreVerifier is usually
better.

5.4. Score calculation performance tricks

5.4.1. Overview

The Solver will normally spend most of its execution time running the score calculation (which is
called in its deepest loops). Faster score calculation will return the same solution in less time with
the same algorithm, which normally means a better solution in equal time.

5.4.2. Score calculation speed

After solving a problem, the Solver will log the score calculation speed per second. This is a good
measurement of Score calculation performance, despite that it is affected by non score calculation
execution time. It depends on the problem scale of the problem dataset. Normally, even for high
scale problems, it is higher than 1000, except if you are using an EasyScoreCalculator.

When improving your score calculation, focus on maximizing the score calculation
speed, instead of maximizing the best score. A big improvement in score
calculation can sometimes yield little or no best score improvement, for example
when the algorithm is stuck in a local or global optima. If you are watching the
calculation speed instead, score calculation improvements are far more visible.

Furthermore, watching the calculation speed allows you to remove or add score
constraints, and still compare it with the original’s calculation speed. Comparing
the best score with the original’s best score is pointless: it’s comparing apples and
oranges.

5.4.3. Incremental score calculation (with deltas)

When a solution changes, incremental score calculation (AKA delta based score calculation)
calculates the delta with the previous state to find the new Score, instead of recalculating the entire

154

score on every solution evaluation.

For example, when a single queen A moves from row 1 to 2, it will not bother to check if queen B
and C can attack each other, since neither of them changed:

Similarly in employee rostering:

155

This is a huge performance and scalability gain. Drools score calculation gives you this huge
scalability gain without forcing you to write a complicated incremental score calculation
algorithm. Just let the Drools rule engine do the hard work.

Notice that the speedup is relative to the size of your planning problem (your n), making
incremental score calculation far more scalable.

5.4.4. Avoid calling remote services during score calculation

Do not call remote services in your score calculation (except if you are bridging EasyScoreCalculator
to a legacy system). The network latency will kill your score calculation performance. Cache the
results of those remote services if possible.

If some parts of a constraint can be calculated once, when the Solver starts, and never change
during solving, then turn them into cached problem facts.

5.4.5. Pointless constraints

If you know a certain constraint can never be broken (or it is always broken), do not write a score
constraint for it. For example in n queens, the score calculation does not check if multiple queens
occupy the same column, because a Queen's column never changes and every solution starts with
each Queen on a different column.

156

Do not go overboard with this. If some datasets do not use a specific constraint but
others do, just return out of the constraint as soon as you can. There is no need to
dynamically change your score calculation based on the dataset.

5.4.6. Built-in hard constraint

Instead of implementing a hard constraint, it can sometimes be built in. For example, if Lecture A
should never be assigned to Room X, but it uses ValueRangeProvider on Solution, so the Solver will
often try to assign it to Room X too (only to find out that it breaks a hard constraint). Use a
ValueRangeProvider on the planning entity or filtered selection to define that Course A should only
be assigned a Room different than X.

This can give a good performance gain in some use cases, not just because the score calculation is
faster, but mainly because most optimization algorithms will spend less time evaluating infeasible
solutions. However, usually this is not a good idea because there is a real risk of trading short term
benefits for long term harm:

• Many optimization algorithms rely on the freedom to break hard constraints when changing
planning entities, to get out of local optima.

• Both implementation approaches have limitations (feature compatibility, disabling automatic
performance optimizations), as explained in their documentation.

5.4.7. Other score calculation performance tricks

• Verify that your score calculation happens in the correct Number type. If you are making the sum
of int values, do not let Drools sum it in a double which takes longer.

• For optimal performance, always use server mode (java -server). We have seen performance
increases of 50% by turning on server mode.

• For optimal performance, use the latest Java version. For example, in the past we have seen
performance increases of 30% by switching from java 1.5 to 1.6.

• Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

5.4.8. Score trap

Make sure that none of your score constraints cause a score trap. A trapped score constraint uses
the same weight for different constraint matches, when it could just as easily use a different weight.
It effectively lumps its constraint matches together, which creates a flatlined score function for that
constraint. This can cause a solution state in which several moves need to be done to resolve or
lower the weight of that single constraint. Some examples of score traps:

• You need two doctors at each table, but you are only moving one doctor at a time. So the solver
has no incentive to move a doctor to a table with no doctors. Punish a table with no doctors
more than a table with only one doctor in that score constraint in the score function.

• Two exams need to be conducted at the same time, but you are only moving one exam at a time.
So the solver has to move one of those exams to another timeslot without moving the other in

157

the same move. Add a coarse-grained move that moves both exams at the same time.

For example, consider this score trap. If the blue item moves from an overloaded computer to an
empty computer, the hard score should improve. The trapped score implementation fails to do that:

The Solver should eventually get out of this trap, but it will take a lot of effort (especially if there are
even more processes on the overloaded computer). Before they do that, they might actually start
moving more processes into that overloaded computer, as there is no penalty for doing so.

Avoiding score traps does not mean that your score function should be smart
enough to avoid local optima. Leave it to the optimization algorithms to deal with
the local optima.

Avoiding score traps means to avoid, for each score constraint individually, a
flatlined score function.

Always specify the degree of infeasibility. The business will often say "if the
solution is infeasible, it does not matter how infeasible it is." While that is true for
the business, it is not true for score calculation as it benefits from knowing how
infeasible it is. In practice, soft constraints usually do this naturally and it is just a
matter of doing it for the hard constraints too.

There are several ways to deal with a score trap:

158

• Improve the score constraint to make a distinction in the score weight. For example, penalize
-1hard for every missing CPU, instead of just -1hard if any CPU is missing.

• If changing the score constraint is not allowed from the business perspective, add a lower score
level with a score constraint that makes such a distinction. For example, penalize -1subsoft for
every missing CPU, on top of -1hard if any CPU is missing. The business ignores the subsoft score
level.

• Add coarse-grained moves and union select them with the existing fine-grained moves. A
coarse-grained move effectively does multiple moves to directly get out of a score trap with a
single move. For example, move multiple items from the same container to another container.

5.4.9. stepLimit benchmark

Not all score constraints have the same performance cost. Sometimes one score constraint can kill
the score calculation performance outright. Use the Benchmarker to do a one minute run and check
what happens to the score calculation speed if you comment out all but one of the score constraints.

5.4.10. Fairness score constraints

Some use cases have a business requirement to provide a fair schedule (usually as a soft score
constraint), for example:

• Fairly distribute the workload amongst the employees, to avoid envy.

• Evenly distribute the workload amongst assets, to improve reliability.

Implementing such a constraint can seem difficult (especially because there are different ways to
formalize fairness), but usually the squared workload implementation behaves most desirable. For
each employee/asset, count the workload w and subtract w² from the score.

159

As shown above, the squared workload implementation guarantees that if you select two employees
from a given solution and make their distribution between those two employees fairer, then the
resulting new solution will have a better overall score. Do not just use the difference from the
average workload, as that can lead to unfairness, as demonstrated below.

160

Instead of the squared workload, it is also possible to use the variance (squared
difference to the average) or the standard deviation (square root of the variance).
This has no effect on the score comparison, because the average will not change
during planning. It is just more work to implement (because the average needs to
be known) and trivially slower (because the calculation is a bit longer).

When the workload is perfectly balanced, the user often likes to see a 0 score, instead of the
distracting -34soft in the image above (for the last solution which is almost perfectly balanced). To
nullify this, either add the average multiplied by the number of entities to the score or instead show
the variance or standard deviation in the UI.

5.5. Constraint configuration: adjust constraint
weights dynamically
Deciding the correct weight and level for each constraint is not easy. It often involves negotiating
with different stakeholders and their priorities. Furthermore, quantifying the impact of soft
constraints is often a new experience for business managers, so they 'll need a number of iterations
to get it right.

Don’t get stuck between a rock and a hard place. Provide a UI to adjust the constraint weights and
visualize the resulting solution, so the business managers can tweak the constraint weights
themselves:

161

https://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Standard_deviation

5.5.1. Create a constraint configuration

First, create a new class to hold the constraint weights and other constraint parameters. Annotate it
with @ConstraintConfiguration:

@ConstraintConfiguration
public class ConferenceConstraintConfiguration {
 ...
}

There will be exactly one instance of this class per planning solution. The planning solution and the
constraint configuration have a one to one relationship, but they serve a different purpose, so they
aren’t merged into a single class. A @ConstraintConfiguration class can extend a parent
@ConstraintConfiguration class, which can be useful in international use cases with many regional
constraints.

Add the constraint configuration on the planning solution and annotate that field or property with
@ConstraintConfigurationProvider:

162

@PlanningSolution
public class ConferenceSolution {

 @ConstraintConfigurationProvider
 private ConferenceConstraintConfiguration constraintConfiguration;

 ...
}

The @ConstraintConfigurationProvider annotation automatically exposes the constraint
configuration as a problem fact, there is no need to add a @ProblemFactProperty annotation.

The constraint configuration class holds the constraint weights, but it can also hold constraint
parameters. For example in conference scheduling, the minimum pause constraint has a constraint
weight (like any other constraint), but it also has a constraint parameter that defines the length of
the minimum pause between two talks of the same speaker. That pause length depends on the
conference (= the planning problem): in some big conferences 20 minutes isn’t enough to go from
one room to the other. That pause length is a field in the constraint configuration without a
@ConstraintWeight annotation.

5.5.2. Add a constraint weight for each constraint

In the constraint configuration class, add a @ConstraintWeight field or property for each constraint:

@ConstraintConfiguration(constraintPackage = "...conferencescheduling.solver")
public class ConferenceConstraintConfiguration {

 @ConstraintWeight("Speaker conflict")
 private HardMediumSoftScore speakerConflict = HardMediumSoftScore.ofHard(10);

 @ConstraintWeight("Theme track conflict")
 private HardMediumSoftScore themeTrackConflict = HardMediumSoftScore.ofSoft(10);
 @ConstraintWeight("Content conflict")
 private HardMediumSoftScore contentConflict = HardMediumSoftScore.ofSoft(100);

 ...
}

The type of the constraint weights must be the same score class as the planning solution’s score
member. For example in conference scheduling, ConferenceSolution.getScore() and
ConferenceConstraintConfiguration.getSpeakerConflict() both return a HardMediumSoftScore.

A constraint weight cannot be null. Give each constraint weight a default value, but expose them in
a UI so the business users can tweak them. The example above uses the ofHard(), ofMedium() and
ofSoft() methods to do that. Notice how it defaults the content conflict constraint as ten times more
important than the theme track conflict constraint. Normally, a constraint weight only uses one
score level, but it’s possible to use multiple score levels (at a small performance cost).

163

Each constraint has a constraint package and a constraint name, together they form the constraint
id. These connect the constraint weight with the constraint implementation. For each constraint
weight, there must be a constraint implementation with the same package and the same
name.

• The @ConstraintConfiguration annotation has a constraintPackage property that defaults to the
package of the constraint configuration class. Most cases with Drools score calculation, need to
override that because the DRLs use another package. For example, the DRL below uses the
package …conferencescheduling.solver, so the constraint configuration above specifies a
constraintPackage. Cases with Constraint streams, normally don’t need to specify it.

• The @ConstraintWeight annotation has a value which is the constraint name (for example
"Speaker conflict"). It inherits the constraint package from the @ConstraintConfiguration, but it
can override that, for example @ConstraintWeight(constraintPackage = "…region.france", …)
to use a different constraint package than some of the other weights.

So every constraint weight ends up with a constraint package and a constraint name. Each
constraint weight links with a constraint implementation, for example in Drools score calculation:

package ...conferencescheduling.solver;

rule "Speaker conflict"
 when
 ...
 then
 scoreHolder.penalize(kcontext);
end

rule "Theme track conflict"
 when
 ...
 then
 scoreHolder.penalize(kcontext, ...);
end

rule "Content conflict"
 when
 ...
 then
 scoreHolder.penalize(kcontext, ...);
end

Each of the constraint weights defines the score level and score weight of their constraint. The
constraint implementation calls reward() or penalize() and the constraint weight is automatically
applied.

If the constraint implementation provides a match weight, that match weight is multiplied with
the constraint weight. For example, the content conflict constraint weight defaults to 100soft and
the constraint implementation penalizes each match based on the number of shared content tags:

164

 @ConstraintWeight("Content conflict")
 private HardMediumSoftScore contentConflict = HardMediumSoftScore.ofSoft(100);

rule "Content conflict"
 when
 $talk1 : Talk(...)
 $talk2 : Talk(...)
 then
 scoreHolder.penalize(kcontext,
 $talk2.overlappingContentCount($talk1));
end

So when 2 overlapping talks share only 1 content tag, the score is impacted by -100soft. But when 2
overlapping talks share 3 content tags, the match weight is 3, so the score is impacted by -300soft.

5.6. Explaining the score: which constraints are
broken?
The easiest way to explain the score during development is to print the return value of
explainBestScore(), but only use that method for diagnostic purposes:

System.out.println(solver.explainBestScore());

For example in conference scheduling, this prints that talk S51 is responsible for breaking the hard
constraint Speaker required room tag:

Explanation of score (-1hard/-806soft):
 Constraint match totals:
 -1hard: constraint (Speaker required room tag) has 1 matches:
 -1hard: justifications ([S51])
 -340soft: constraint (Theme track conflict) has 32 matches:
 -20soft: justifications ([S68, S66])
 -20soft: justifications ([S61, S44])
 ...
 ...
 Indictments (top 5 of 72):
 -1hard/-22soft: justification (S51) has 12 matches:
 -1hard: constraint (Speaker required room tag)
 -10soft: constraint (Theme track conflict)
 ...
 ...

Do not attempt to parse this string or use it in your UI or exposed services. Instead
use the ConstraintMatch API below and do it properly.

165

5.6.1. Using score calculation outside the Solver

If other parts of your application, for example your webUI, need to calculate the score of a solution,
reuse the ScoreDirectorFactory of the SolverFactory to build a separate ScoreDirector for that
webUI:

ScoreDirectorFactory<CloudBalance> scoreDirectorFactory = solverFactory
.getScoreDirectorFactory();
try (ScoreDirector<CloudBalance> guiScoreDirector = scoreDirectorFactory
.buildScoreDirector()) {
 ...
}

The try ARM will call ScoreDirector.close() when the ScoreDirector becomes
useless, to avoid a memory leak, especially with Drools score calculation.

Then use it when you need to calculate the Score of a solution:

guiScoreDirector.setWorkingSolution(cloudBalance);
Score score = guiScoreDirector.calculateScore();

Furthermore, the ScoreDirector can explain the score through constraint match totals and/or
indictments:

166

5.6.2. Constraint match total: break down the score by constraint

To break down the score per constraint (so per score rule with Drools score calculation), get the
ConstraintMatchTotals from the ScoreDirector:

Collection<ConstraintMatchTotal> constraintMatchTotals = guiScoreDirector
.getConstraintMatchTotals();
for (ConstraintMatchTotal constraintMatchTotal : constraintMatchTotals) {
 String constraintName = constraintMatchTotal.getConstraintName();
 // The score impact of that constraint
 HardSoftScore totalScore = (HardSoftScore) constraintMatchTotal.getScore();

 for (ConstraintMatch constraintMatch : constraintMatchTotal.getConstraintMatchSet
()) {
 List<Object> justificationList = constraintMatch.getJustificationList();
 HardSoftScore score = (HardSoftScore) constraintMatch.getScore();
 ...
 }
}

Each ConstraintMatchTotal represents one constraint (so one score rule) and has a part of the
overall score. The sum of all the ConstraintMatchTotal.getScore() equals the overall score.

167

Drools score calculation supports constraint matches automatically, but
incremental Java score calculation requires implementing an extra interface.

5.6.3. Indictment heat map: visualize the hot planning entities

To show a heat map in the UI that highlights the planning entities and problem facts have an
impact on the Score, get the Indictment map from the ScoreDirector:

Map<Object, Indictment> indictmentMap = guiScoreDirector.getIndictmentMap();
for (CloudProcess process : cloudBalance.getProcessList()) {
 Indictment indictment = indictmentMap.get(process);
 if (indictment == null) {
 continue;
 }
 // The score impact of that planning entity
 HardSoftScore totalScore = (HardSoftScore) indictment.getScore();

 for (ConstraintMatch constraintMatch : indictment.getConstraintMatchSet()) {
 String constraintName = constraintMatch.getConstraintName();
 HardSoftScore score = (HardSoftScore) constraintMatch.getScore();
 ...
 }
}

Each Indictment is the sum of all constraints where that justification object is involved with. The
sum of all the Indictment.getScoreTotal() differs from the overall score, because multiple
Indictments can share the same ConstraintMatch.

Drools score calculation supports constraint matches automatically, but
incremental Java score calculation requires implementing an extra interface.

5.7. Testing score constraints with JUnit
It’s recommended to write a unit test for each score constraint individually to check that it behaves
correctly.

Add a test scoped dependency to the optaplanner-test jar to take advantage of the JUnit integration
and use the ScoreVerifier classes to test score rules in DRL (or a constraint match aware
incremental score calculator). For example, suppose we want to test these score rules:

168

global HardSoftScoreHolder scoreHolder;

rule "requiredCpuPowerTotal"
 when
 ...
 then
 scoreHolder.addHardConstraintMatch(...);
end

...

rule "computerCost"
 when
 ...
 then
 scoreHolder.addSoftConstraintMatch(...);
end

For each score rule, we have a separate @Test that only tests the effect of that score rule on the
score:

public class CloudBalancingScoreConstraintTest {

 private HardSoftScoreVerifier<CloudBalance> scoreVerifier = new
HardSoftScoreVerifier<>(
 SolverFactory.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml"));

 @Test
 public void requiredCpuPowerTotal() {
 CloudComputer c1 = new CloudComputer(1L, 1000, 1, 1, 1);
 CloudComputer c2 = new CloudComputer(2L, 200, 1, 1, 1);
 CloudProcess p1 = new CloudProcess(1L, 700, 0, 0);
 CloudProcess p2 = new CloudProcess(2L, 70, 0, 0);
 CloudBalance solution = new CloudBalance(0L,
 Arrays.asList(c1, c2),
 Arrays.asList(p1, p2));
 // Uninitialized
 scoreVerifier.assertHardWeight("requiredCpuPowerTotal", 0, solution);
 p1.setComputer(c1);
 p2.setComputer(c1);
 // Usage 700 + 70 is within capacity 1000 of c1
 scoreVerifier.assertHardWeight("requiredCpuPowerTotal", 0, solution);
 p1.setComputer(c2);
 p2.setComputer(c2);
 // Usage 700 + 70 is above capacity 200 of c2
 scoreVerifier.assertHardWeight("requiredCpuPowerTotal", -570, solution);
 }

169

 ...

 @Test
 public void computerCost() {
 CloudComputer c1 = new CloudComputer(1L, 1, 1, 1, 200);
 CloudComputer c2 = new CloudComputer(2L, 1, 1, 1, 30);
 CloudProcess p1 = new CloudProcess(1L, 0, 0, 0);
 CloudProcess p2 = new CloudProcess(2L, 0, 0, 0);
 CloudBalance solution = new CloudBalance(0L,
 Arrays.asList(c1, c2),
 Arrays.asList(p1, p2));
 // Uninitialized
 scoreVerifier.assertSoftWeight("computerCost", 0, solution);
 p1.setComputer(c1);
 p2.setComputer(c1);
 // Pay 200 for c1
 scoreVerifier.assertSoftWeight("computerCost", -200, solution);
 p2.setComputer(c2);
 // Pay 200 + 30 for c1 and c2
 scoreVerifier.assertSoftWeight("computerCost", -230, solution);
 }

}

There is a ScoreVerifier implementation for each Score implementation. In the assertHardWeight()
and assertSoftWeight() methods, the weight of the other score rules is ignored (even those of the
same score level).

A ScoreVerifier does not work well to isolate score corruption, use an
assertionScoreDirectorFactory instead.

170

Chapter 6. Constraint streams score
calculation
Constraint streams are a Functional Programming form of incremental score calculation in plain
Java that is easy to read, write and debug. The API should feel familiar if you’ve worked with Java 8
Streams or SQL.

The ConstraintStreams/ConstraintProvider API is an ongoing project. It works but
it has many API gaps. Therefore, it is not rich enough yet to handle complex
constraints. Constraint justifications may not function properly.

6.1. Introduction
Using Java 8’s Streams API, we could implement an easy score calculator that uses a functional
approach:

 private int doNotAssignAnn() {
 int softScore = 0;
 schedule.getShiftList().stream()
 .filter(Shift::isEmployeeAnn)
 .forEach(shift -> {
 softScore -= 1;
 });
 return softScore;
 }

However, that scales poorly because it doesn’t do an incremental calculation: When the planning
variable of a single Shift changes, to recalculate the score, the normal Streams API has to execute
the entire stream from scratch. The ConstraintStreams API enables you to write similar code in
pure Java, while reaping the performance benefits of incremental score calculation. This is an
example of the same code, using the Constraint Streams API:

 private Constraint doNotAssignAnn(ConstraintFactory factory) {
 return factory.from(Shift.class)
 .filter(Shift::isEmployeeAnn)
 .penalize("Don't assign Ann", HardSoftScore.ONE_SOFT);
 }

This constraint stream iterates over all instances of class Shift in the problem facts and planning
entities in the planning problem. It finds every Shift which is assigned to employee Ann and for
every such instance (also called a match), it adds a soft penalty of 1 to the overall score. The
following figure illustrates this process on a problem with 4 different shifts:

171

If any of the instances change during solving, the constraint stream automatically detects the
change and only recalculates the minimum necessary portion of the problem that is affected by the
change. The following figure illustrates this incremental score calculation:

172

6.2. Creating a constraint stream
To use the ConstraintStreams API in your project, first write a pure Java ConstraintProvider
implementation similar to the following example.

 public class MyConstraintProvider implements ConstraintProvider {

 @Override
 public Constraint[] defineConstraints(ConstraintFactory factory) {
 return new Constraint[] {
 penalizeEveryShift(factory)
 };
 }

 private Constraint penalizeEveryShift(ConstraintFactory factory) {
 return factory.from(Shift.class)
 .penalize("Penalize a shift", HardSoftScore.ONE_SOFT);
 }

 }

173

This example contains one constraint, penalizeEveryShift(…). However, you can
include as many as you require.

Add the following code to your solver configuration:

 <solver>
 <scoreDirectorFactory>
 <constraintProviderClass>
com.example.MyConstraintProvider</constraintProviderClass>
 </scoreDirectorFactory>
 ...
 </solver>

6.3. Constraint stream cardinality
Constraint stream cardinality is a measure of how many objects a single constraint match consists
of. The simplest constraint stream has a cardinality of 1, meaning each constraint match only
consists of 1 object. Therefore, it is called a UniConstraintStream:

 private Constraint doNotAssignAnn(ConstraintFactory factory) {
 return factory.from(Shift.class) // Returns UniStream<Shift>.
 ...
 }

Some constraint stream building blocks can increase stream cardinality, such as join or groupBy:

 private Constraint doNotAssignAnn(ConstraintFactory factory) {
 return factory.from(Shift.class) // Returns Uni<Shift>.
 .join(Employee.class) // Returns Bi<Shift, Employee>.
 .join(DayOff.class) // Returns Tri<Shift, Employee, DayOff>.
 .join(Country.class) // Returns Quad<Shift, Employee, DayOff,
Country>.
 ...
 }

The latter can also decrease stream cardinality:

 private Constraint doNotAssignAnn(ConstraintFactory factory) {
 return factory.from(Shift.class) // Returns UniStream<Shift>.
 .join(Employee.class) // Returns BiStream<Shift, Employee>.
 .groupBy((shift, employee) -> employee) // Returns
UniStream<Employee>.
 ...
 }

174

The following constraint stream cardinalities are currently supported:

Cardinality Prefix Defining interface

1 Uni UniConstraintStream<A>

2 Bi BiConstraintStream<A, B>

3 Tri TriConstraintStream<A, B, C>

4 Quad QuadConstraintStream<A, B, C,
D>

6.4. Building blocks
Constraint streams are chains of different operations, called building blocks. Each constraint
stream starts with a from(…) building block and is terminated by either a penalty or a reward. The
following example shows the simplest possible constraint stream:

 private Constraint penalizeInitializedShifts(ConstraintFactory factory) {
 return factory.from(Shift.class)
 .penalize("Initialized shift", HardSoftScore.ONE_SOFT);
 }

This constraint stream iterates over all known and initialized instances of Shift. To include
uninitialized instances, replace the from() building block with fromUnfiltered():

 private Constraint penalizeAllShifts(ConstraintFactory factory) {
 return factory.fromUnfiltered(Shift.class)
 .penalize("A shift", HardSoftScore.ONE_SOFT);
 }

6.4.1. Penalties and rewards

The purpose of constraint streams is to build up a score for a solution. To do this, every constraint
stream must be terminated by a call to either a penalize() or a reward() building block. The
penalize() building block makes the score worse and the reward() building block improves the
score. Penalties and rewards have several components:

• Constraint package is the Java package that contains the constraint. The default value is the
package that contains the ConstraintProvider implementation or the value from constraint
configuration, if implemented.

• Constraint name is the human readable descriptive name for the constraint, which (together
with the constraint package) must be unique within the entire ConstraintProvider
implementation.

• Constraint weight is a constant score value indicating how much every breach of the constraint
affects the score. Valid examples include SimpleScore.ONE, HardSoftScore.ONE_HARD and
HardMediumSoftScore.of(1, 2, 3).

175

• Constraint match weigher is an optional function indicating how many times the constraint
weight should be applied in the score. The penalty or reward score impact is the constraint
weight multiplied by the match weight. The default value is 1.

The ConstraintStreams API supports many different types of penalties. Browse the API in your IDE
for the full list of method overloads. Here are some examples:

• Simple penalty (penalize("Constraint name", SimpleScore.ONE)) makes the score worse by 1 per
every match in the constraint stream. The score type must be the same type as used on the
@PlanningScore annotated member on the planning solution.

• Dynamic penalty (penalize("Constraint name", SimpleScore.ONE, Shift::getHours)) makes the
score worse by the number of hours in every matching Shift in the constraint stream. This is an
example of using a constraint match weigher.

• Configurable penalty (penalizeConfigurable("Constraint name")) makes the score worse using
constraint weights defined in constraint configuration.

• Configurable dynamic penalty(penalizeConfigurable("Constraint name", Shift::getHours))
makes the score worse using constraint weights defined in constraint configuration, multiplied
by the number of hours in every matching Shift in the constraint stream.

By replacing the keyword penalize by reward in the name of these building blocks, you will get
operations that affect score in the opposite direction.

6.4.2. Filtering

Filtering enables you to reduce the number of constraint matches in your stream. It first
enumerates all constraint matches and then applies a predicate to filter some matches out. The
predicate is a function that only returns true if the match is to continue in the stream. The following
constraint stream removes all of Beth’s shifts from all Shift matches:

 private Constraint penalizeAnnShifts(ConstraintFactory factory) {
 return factory.from(Shift.class)
 .filter(shift -> shift.getEmployeeName().equals("Ann"))
 .penalize("Ann's shift", SimpleScore.ONE);
 }

The following example retrieves a list of shifts where an employee has asked for a day off from a bi-
constraint match of Shift and DayOff:

 private Constraint penalizeShiftsOnOffDays(ConstraintFactory factory) {
 return factory.from(Shift.class)
 .join(DayOff.class)
 .filter((shift, dayOff) -> shift.date == dayOff.date && shift.employee
== dayOff.employee)
 .penalize("Shift on an off-day", SimpleScore.ONE);
 }

176

The following figure illustrates both these examples:

For performance reasons, using the join building block with the appropriate Joiner
is preferrable when possible. Using a Joiner creates only the constraint matches
that are necessary, while filtered join creates all possible constraint matches and
only then filters some of them out.

The following functions are required for filtering constraint streams of different cardinality:

Cardinality Filtering Predicate

1 java.util.function.Predicate<A>

2 java.util.function.BiPredicate<A, B>

3 org.optaplanner.core.api.function.TriPredicate
<A, B, C>

4 org.optaplanner.core.api.function.QuadPredicat
e<A, B, C, D>

6.4.3. Joining

Joining is a way to increase stream cardinality and it is similar to the inner join operation in SQL.
As the following figure illustrates, a join creates a cartesian product of the streams being joined:

177

Doing this is inefficient because the resulting stream might contain constraint matches that are of
no interest to your constraint. Use Joiner to restrict your joins only to the matches you are actually
interested in, as shown in this example:

 import static org.optaplanner.core.api.score.stream.Joiners.*;

 ...

 private Constraint shiftOnDayOff(ConstraintFactory constraintFactory) {
 return constraintFactory.from(Shift.class)
 .join(DayOff.class,
 equal(Shift::getDate, DayOff::getDate),
 equal(Shift::getEmployee, DayOff::getEmployee))
 .penalize("Shift on an off-day",
 HardSoftScore.ONE_HARD);
 }

The following figure illustrates the behavior:

178

The following Joiner types are supported:

• equal for joining constraint matches where they equals() one another.

• greaterThan, greaterThanOrEqual, lessThan and lessThanOrEqual for joining Comparable constraint
matches per the prescribed ordering.

For a full list of all supported Joiner implementations and their various overloads, refer to the
org.optaplanner.core.api.score.stream.Joiners class.

If the other stream might match multiple times, but it must only impact the score
once (for each element of the original stream), use ifExists instead. It does not
create cartesian products and therefore generally performs better.

6.4.4. Grouping and collectors

Grouping collects items in a stream according to user-provider criteria (also called "group key"),
similar to what a GROUP BY SQL clause does. Additionally, some grouping operations also accept one
or more Collector instances, which provide various aggregation functions. The following figure
illustrates a simple groupBy() operation:

179

For example, the following code snippet first groups all processes by the computer they run on,
sums up all the power required by the processes on that computer using the
ConstraintCollectors.sum(…) collector, and finally penalizes every computer whose processes
consume more power than is available.

 import static org.optaplanner.core.api.score.stream.ConstraintCollectors.*;

 ...

 private Constraint requiredCpuPowerTotal(ConstraintFactory constraintFactory) {
 return constraintFactory.from(CloudProcess.class)
 .groupBy(CloudProcess::getComputer, sum(CloudProcess:
:getRequiredCpuPower))
 .filter((computer, requiredCpuPower) -> requiredCpuPower > computer
.getCpuPower())
 .penalize("requiredCpuPowerTotal",
 HardSoftScore.ONE_HARD,
 (computer, requiredCpuPower) -> requiredCpuPower - computer
.getCpuPower());
 }

180

Information might be lost during grouping. In the previous example, filter() and
all subsequent operations no longer have direct access to the original CloudProcess
instance.

There are several collectors available out of the box. You can also provide your own collectors by
implementing the org.optaplanner.core.api.score.stream.uni.UniConstraintCollector interface, or
its Bi…, Tri… counterparts.

Out-of-the-box collectors

The following section focuses on the collector implementations provided out of the box. This
section only describes the int-based variants of the collectors in detail. Many of the collectors also
provide variants for other applicable result data types, such as long, BigDecimal or Duration. You can
find a complete list by exploring the org.optaplanner.core.api.score.stream.ConstraintCollectors
class.

Collecting count()

The ConstraintCollectors.count(…) counts all elements in a group. For example, the following use
of the collector gives a number of items for two separate groups - one where the talks have
unavailable speakers, and one where they don’t.

 private Constraint speakerAvailability(ConstraintFactory factory) {
 return factory.from(Talk.class)
 .groupBy(Talk::hasAnyUnavailableSpeaker, count())
 .penalize("speakerAvailability",
 HardSoftScore.ONE_HARD,
 (hasUnavailableSpeaker, count) -> ...);
 }

The return value for this collector is a 32-bit signed integer (int). There is also a 64-bit variant,
countLong().

Collecting countDistinct()

The ConstraintCollectors.countDistinct(…) counts any element in a group once, regardless of how
many times it occurs. For example, the following use of the collector gives a number of talks in each
unique room.

 private Constraint roomCount(ConstraintFactory factory) {
 return factory.from(Talk.class)
 .groupBy(Talk::getRoom, countDistinct())
 .penalize("roomCount",
 HardSoftScore.ONE_SOFT,
 (room, count) -> ...);
 }

The return value for this collector is a 32-bit signed integer (int). There is also a 64-bit variant,

181

countLong().

Collecting sum()

To sum the values of a particular property of all elements in the group, use the
ConstraintCollectors.sum(…) collector. The following code snippet first groups all processes by the
computer they run on and sums up all the power required by the processes on that computer using
the ConstraintCollectors.sum(…) collector.

 private Constraint requiredCpuPowerTotal(ConstraintFactory constraintFactory) {
 return constraintFactory.from(CloudProcess.class)
 .groupBy(CloudProcess::getComputer, sum(CloudProcess:
:getRequiredCpuPower))
 .penalize("requiredCpuPowerTotal",
 HardSoftScore.ONE_SOFT,
 (computer, requiredCpuPower) -> requiredCpuPower);
 }

The return value for this collector is a 32-bit signed integer (int). There are also the following
variants:

• 64-bit variant sumLong()

• java.math.BigDecimal-based variant sumBigDecimal()

• java.math.BigInteger-based variant sumBigInteger()

• java.time.Duration-based variant sumDuration()

• java.time.Period-based variant sumPeriod()

• generic sum() variant for summing up custom types.

Minimums and maximums

To extract the minimum or maximum of a group, use the ConstraintCollectors.min(…) and
ConstraintCollectors.max(…) collectors respectively.

These collectors operate on values of properties which are Comparable (such as Integer, String or
Duration), although there are also variants of these collectors which allow you to provide your own
Comparator.

The following example finds a computer which runs the most power-demanding process:

182

 private Constraint computerWithBiggestProcess(ConstraintFactory constraintFactory)
{
 return constraintFactory.from(CloudProcess.class)
 .groupBy(CloudProcess::getComputer, max(CloudProcess:
:getRequiredCpuPower))
 .penalize("computerWithBiggestProcess",
 HardSoftScore.ONE_HARD,
 (computer, biggestProcess) -> ...);
 }

Comparator and Comparable implementations used with min(…) and max(…)
constraint collectors are expected to be consistent with equals(…). See Javadoc for
Comparable to learn more.

Collection collectors

To extract all elements in the group into a collection, use the ConstraintCollectors.toList(…) and
ConstraintCollectors.toSet(…) collectors respectively. ConstraintCollectors.toCollection(…)
enables you to use a custom Collection implementation.

The following example retrieves all processes running on a computer in a List:

 private Constraint computerWithBiggestProcess(ConstraintFactory constraintFactory)
{
 return constraintFactory.from(CloudProcess.class)
 .groupBy(CloudProcess::getComputer, toList())
 .penalize("computerAndItsProcesses",
 HardSoftScore.ONE_HARD,
 (computer, processList) -> ...);
 }

The iteration order of elements in the resulting collection is not guaranteed to be
stable. To achieve stable iteration order, use ConstraintCollectors.toCollection()
together with a sorted collection, such as TreeSet.

6.4.5. Conditional propagation

Conditional propagation enables you to exclude constraint matches from the constraint stream
based on the presence or absence of some other object.

183

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

The following example penalizes computers which have at least one process running:

 private Constraint runningComputer(ConstraintFactory constraintFactory) {
 return constraintFactory.from(CloudComputer.class)
 .ifExists(CloudProcess.class, Joiners.equal(Function.identity(),
CloudProcess::getComputer))
 .penalize("runningComputer",
 HardSoftScore.ONE_SOFT,
 computer -> ...);
 }

Note the use of the ifExists() building block. On UniConstraintStream, the ifExistsOther() building
block is also available which is useful in situations where the from() constraint match type is the
same as the ifExists() type.

Conversely, if the ifNotExists() building block is used (as well as the ifNotExistsOther() building
block on UniConstraintStream) you can achieve the opposite affect:

184

 private Constraint unusedComputer(ConstraintFactory constraintFactory) {
 return constraintFactory.from(CloudComputer.class)
 .ifNotExists(CloudProcess.class, Joiners.equal(Function.identity(),
CloudProcess::getComputer))
 .penalize("unusedComputer",
 HardSoftScore.ONE_HARD,
 computer -> ...);
 }

Here, only the computers without processes running are penalized.

Also note the use of the Joiner class to limit the constraint matches. For a description of available
joiners, see joining. Conditional propagation operates much like joining, with the exception of not
increasing the stream cardinality. Matches from these building blocks are not available further
down the stream.

For performance reasons, using conditional propagation with the appropriate
Joiner instance is preferable to joining. While using join() creates a cartesian
product of the facts being joined, with conditional propagation, the resulting
stream only has at most the original number of constraint matches in it. Joining
should only be used in cases where the other fact is actually required for another
operation further down the stream.

6.5. Variant implementation types
Constraint streams come in two flavors, a default implementation using Drools under the hood and
a pure Java-based implementation called Bavet. The Drools-based implementation is more feature-
complete. Both of these variants implement the same ConstraintProvider API. No Java code changes
are necessary to switch between the two.

Bavet is an experimental implementation that focuses on raw speed and provides superior
performance. However, it lacks features and therefore many of the examples are not supported. To
try it out, implement the ConstraintProvider interface and use the following in your solver config:

 <solver>
 <scoreDirectorFactory>
 <constraintStreamImplType>BAVET</constraintStreamImplType>
 <constraintProviderClass>
com.example.MyConstraintProvider</constraintProviderClass>
 </scoreDirectorFactory>
 ...
 </solver>

185

Chapter 7. Drools score calculation

7.1. Overview
Implement your score calculation using the Drools rule engine. Every score constraint is written as
one or more score rules.

• Advantages:

◦ Incremental score calculation for free

▪ Because most DRL syntax uses forward chaining, it does incremental calculation without
any extra code

◦ Score constraints are isolated as separate rules

▪ Easy to add or edit existing score rules

◦ Flexibility to augment your score constraints by

▪ Defining them in decision tables

▪ Excel (XLS) spreadsheet

▪ KIE Workbench WebUI

▪ Translate them into natural language with DSL

▪ Store and release in the KIE Workbench repository

◦ Performance optimizations in future versions for free

▪ In every release, the Drools rule engine tends to become faster

• Disadvantages:

◦ DRL learning curve

◦ Usage of DRL

▪ Polyglot fear can prohibit the use of a new language such as DRL in some organizations

7.2. Drools score rules configuration
There are several ways to define where your score rules live.

7.2.1. A scoreDrl resource on the classpath

This is the easy way. The score rules live in a DRL file which is provided as a classpath resource. Just
add the score rules DRL file in the solver configuration as a <scoreDrl> element:

 <scoreDirectorFactory>
 <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
 </scoreDirectorFactory>

In a typical project (following the Maven directory structure), that DRL file would be located at

186

$PROJECT_DIR/src/main/resources/org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl
(even for a war project).

The <scoreDrl> element expects a classpath resource, as defined by
ClassLoader.getResource(String), it does not accept a File, nor a URL, nor a
webapp resource. See below to use a File instead.

Add multiple <scoreDrl> elements if the score rules are split across multiple DRL files.

Optionally, you can also set drools configuration properties:

 <scoreDirectorFactory>
 <scoreDrl>org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
 <kieBaseConfigurationProperties>
 <drools.equalityBehavior>...</drools.equalityBehavior>
 </kieBaseConfigurationProperties>
 </scoreDirectorFactory>

To enable property reactive by default, without a @propertyReactive on the domain classes, add
<drools.propertySpecific>ALWAYS</drools.propertySpecific> in there. Otherwise OptaPlanner
automatically changes the Drools default to ALLOWED so property reactive is not active by default.

7.2.2. A scoreDrlFile element

To use File on the local file system, instead of a classpath resource, add the score rules DRL file in
the solver configuration as a <scoreDrlFile> element:

 <scoreDirectorFactory>
 <scoreDrlFile>/home/ge0ffrey/tmp/nQueensScoreRules.drl</scoreDrlFile>
 </scoreDirectorFactory>

For portability reasons, a classpath resource is recommended over a File. An
application build on one computer, but used on another computer, might not find
the file on the same location. Worse, if they use a different Operating System, it is
hard to choose a portable file path.

Add multiple <scoreDrlFile> elements if the score rules are split across multiple DRL files.

7.2.3. A ksessionName in a KJAR from a Maven repository

This way allows you to use score rules defined by the Workbench or build a kjar and deploy it to the
Execution Server. Both the score rules and the solver configuration are resources in a kjar. Clients
can obtain that kjar either from the local classpath, from a local Maven repository or even from a
remote Maven repository.

The score rules still live in a DRL file, but the KieContainer finds that DRL file through the META-
INF/kmodule.xml file:

187

<kmodule xmlns="http://www.drools.org/xsd/kmodule">
 <configuration>
 <!-- Don't enable propertyReactive unless there is a @PropertyReactive annotation
on the domain classes -->
 <property key="drools.propertySpecific" value="ALLOWED"/>
 </configuration>
 <kbase name="nQueensKbase" packages="org.optaplanner.examples.nqueens.solver">
 <ksession name="nQueensKsession"/>
 </kbase>
</kmodule>

The kmodule above will pick up all the DRL files in the package
org.optaplanner.examples.nqueens.solver. A kbase can even extend another kbase.

Starting from version 7.0, Drools enables property reactive by default for all
classes. This means if you have a non-simple getter and forget to apply @Modifies
correctly, corruption occurs. To avoid this, simply set drools.propertySpecific to
ALLOWED as shown above.

Add the ksession name in the solver configuration as a <ksessionName> element:

 <scoreDirectorFactory>
 <ksessionName>nQueensKsession</ksessionName>
 </scoreDirectorFactory>

In this approach, it’s required to use a SolverFactory.createFromKieContainerXmlResource(…)
method to build the SolverFactory. If no <ksessionName> element is specified, the default ksession of
the kmodule.xml is used.

7.3. Implementing a score rule
Here is an example of a score constraint implemented as a score rule in a DRL file:

rule "Horizontal conflict"
 when
 Queen($id : id, row != null, $i : rowIndex)
 Queen(id > $id, rowIndex == $i)
 then
 scoreHolder.addConstraintMatch(kcontext, -1);
end

This score rule will fire once for every two queens with the same rowIndex. The (id > $id) condition
is needed to assure that for two queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or
(B, B). Let us take a closer look at this score rule on this solution of four queens:

188

In this solution the Horizontal conflict score rule will fire for six queen couples: (A, B), (A, C), (A,
D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical or diagonal line, this
solution will have a score of -6. An optimal solution of four queens has a score of 0.

Notice that every score rule uses at least one planning entity class (directly or
indirectly through a logically inserted fact).

It is a waste of time to write a score rule that only relates to problem facts, as the
consequence will never change during planning, no matter what the possible
solution.

A ScoreHolder instance is asserted into the KieSession as a global called scoreHolder. The score rules
need to (directly or indirectly) update that instance to influence the score of a solution state.

The kcontext variable is a magic variable in Drools Expert. The scoreHolder's
method uses it to do incremental score calculation correctly and to create a
ConstraintMatch instance.

7.4. Weighing score rules
If you’ve configured a constraint configuration, the score level and score weight of each constraint
are beautifully decoupled from the constraint implementation, so they can be changed by the
business users more easily.

In that case, use the reward() and penalize() methods of the ScoreHolder:

189

package org.optaplanner.examples.nqueens.solver;
...
global SimpleScoreHolder scoreHolder;

rule "Horizontal conflict"
 when
 Queen($id : id, row != null, $i : rowIndex)
 Queen(id > $id, rowIndex == $i)
 then
 scoreHolder.penalize(kcontext);
end

// Vertical conflict is impossible due the model

rule "Ascending diagonal conflict"
 when
 Queen($id : id, row != null, $i : ascendingDiagonalIndex)
 Queen(id > $id, ascendingDiagonalIndex == $i)
 then
 scoreHolder.penalize(kcontext);
end

rule "Descending diagonal conflict"
 when
 Queen($id : id, row != null, $i : descendingDiagonalIndex)
 Queen(id > $id, descendingDiagonalIndex == $i)
 then
 scoreHolder.penalize(kcontext);
end

They automatically impact the score for each constraint match by the score weight defined in the
constraint configuration.

The drl file must define a package (otherwise Drools defaults to defaultpkg) and it must match with
the constraint configuration's constraintPackage.

To learn more about the Drools rule language (DRL), consult the Drools
documentation.

The score weight of some constraints depends on the constraint match. In these cases, provide a
match weight to the reward() or penalize() methods. The score impact is the constraint weight
multiplied with the match weight.

For example in conference scheduling, the impact of a content conflict, depends on the number of
shared content tags between 2 overlapping talks:

190

https://drools.org/learn/documentation.html
https://drools.org/learn/documentation.html

rule "Content conflict"
 when
 $talk1 : Talk(...)
 $talk2 : Talk(...)
 then
 scoreHolder.penalize(kcontext,
 $talk2.overlappingContentCount($talk1));
end

Presume its constraint weight is set to 100soft. So when 2 overlapping talks share only 1 content
tag, the score is impacted by -100soft. But when 2 overlapping talks share 3 content tags, the match
weight is 3, so the score is impacted by -300soft.

If there is no constraint configuration, you’ll need to hard-code the weight in the constraint
implementations:

global HardSoftScoreHolder scoreHolder;

// RoomCapacity: For each lecture, the number of students that attend the course must
be less or equal
// than the number of seats of all the rooms that host its lectures.
rule "roomCapacity"
 when
 $room : Room($capacity : capacity)
 $lecture : Lecture(room == $room, studentSize > $capacity, $studentSize :
studentSize)
 then
 // Each student above the capacity counts as one point of penalty.
 scoreHolder.addSoftConstraintMatch(kcontext, ($capacity - $studentSize));
end

// CurriculumCompactness: Lectures belonging to a curriculum should be adjacent
// to each other (i.e., in consecutive periods).
// For a given curriculum we account for a violation every time there is one lecture
not adjacent
// to any other lecture within the same day.
rule "curriculumCompactness"
 when
 ...
 then
 // Each isolated lecture in a curriculum counts as two points of penalty.
 scoreHolder.addSoftConstraintMatch(kcontext, -2);
end

Notice how addSoftConstraintMatch() specifies that it’s a soft constraint, and needs a negative
number to penalize each match. Otherwise it would reward such matches. The parameter
($capacity - $studentSize) always results in a negative number because studentSize > $capacity.

191

Chapter 8. Shadow variable

8.1. Introduction
A shadow variable is a planning variable whose correct value can be deduced from the state of the
genuine planning variables. Even though such a variable violates the principle of normalization by
definition, in some use cases it can be very practical to use a shadow variable, especially to express
the constraints more naturally. For example in vehicle routing with time windows: the arrival time
at a customer for a vehicle can be calculated based on the previously visited customers of that
vehicle (and the known travel times between two locations).

When the customers for a vehicle change, the arrival time for each customer is automatically
adjusted. For more information, see the vehicle routing domain model.

From a score calculation perspective, a shadow variable is like any other planning variable. From
an optimization perspective, OptaPlanner effectively only optimizes the genuine variables (and
mostly ignores the shadow variables): it just assures that when a genuine variable changes, any
dependent shadow variables are changed accordingly.

192

Any class that has at least one shadow variable, is a planning entity class
(even if it has no genuine planning variables). That class must be defined in
the solver configuration (unless classes are automatically scanned) and have a
@PlanningEntity annotation.

A genuine planning entity class has at least one genuine planning variable, but can
have shadow variables too. A shadow planning entity class has no genuine
planning variables and at least one shadow planning variable.

There are several built-in shadow variables:

8.2. Bi-directional variable (inverse relation shadow
variable)
Two variables are bi-directional if their instances always point to each other (unless one side points
to null and the other side does not exist). So if A references B, then B references A.

For a non-chained planning variable, the bi-directional relationship must be a many to one
relationship. To map a bi-directional relationship between two planning variables, annotate the
master side (which is the genuine side) as a normal planning variable:

193

@PlanningEntity
public class CloudProcess {

 @PlanningVariable(...)
 public CloudComputer getComputer() {
 return computer;
 }
 public void setComputer(CloudComputer computer) {...}

}

And then annotate the other side (which is the shadow side) with a @InverseRelationShadowVariable
annotation on a Collection (usually a Set or List) property:

@PlanningEntity
public class CloudComputer {

 @InverseRelationShadowVariable(sourceVariableName = "computer")
 public List<CloudProcess> getProcessList() {
 return processList;
 }

}

Register this class as a planning entity, otherwise OptaPlanner won’t detect it and the shadow
variable won’t update. The sourceVariableName property is the name of the genuine planning
variable on the return type of the getter (so the name of the genuine planning variable on the other
side).

The shadow property, which is Collection (usually List, Set or SortedSet), can
never be null. If no genuine variable references that shadow entity, then it is an
empty collection. Furthermore it must be a mutable Collection because once
OptaPlanner starts initializing or changing genuine planning variables, it will add
and remove elements to the Collections of those shadow variables accordingly.

For a chained planning variable, the bi-directional relationship is always a one to one relationship.
In that case, the genuine side looks like this:

194

@PlanningEntity
public class Customer ... {

 @PlanningVariable(graphType = PlanningVariableGraphType.CHAINED, ...)
 public Standstill getPreviousStandstill() {
 return previousStandstill;
 }
 public void setPreviousStandstill(Standstill previousStandstill) {...}

}

And the shadow side looks like this:

@PlanningEntity
public class Standstill {

 @InverseRelationShadowVariable(sourceVariableName = "previousStandstill")
 public Customer getNextCustomer() {
 return nextCustomer;
 }
 public void setNextCustomer(Customer nextCustomer) {...}

}

Register this class as a planning entity, otherwise OptaPlanner won’t detect it and the shadow
variable won’t update.

The input planning problem of a Solver must not violate bi-directional
relationships. If A points to B, then B must point to A. OptaPlanner will not violate
that principle during planning, but the input must not violate it either.

8.3. Anchor shadow variable
An anchor shadow variable is the anchor of a chained variable.

Annotate the anchor property as a @AnchorShadowVariable annotation:

@PlanningEntity
public class Customer {

 @AnchorShadowVariable(sourceVariableName = "previousStandstill")
 public Vehicle getVehicle() {...}
 public void setVehicle(Vehicle vehicle) {...}

}

195

This class should already be registered as a planning entity. The sourceVariableName property is the
name of the chained variable on the same entity class.

8.4. Custom VariableListener
To update a shadow variable, OptaPlanner uses a VariableListener. To define a custom shadow
variable, write a custom VariableListener: implement the interface and annotate it on the shadow
variable that needs to change.

 @PlanningVariable(...)
 public Standstill getPreviousStandstill() {
 return previousStandstill;
 }

 @CustomShadowVariable(variableListenerClass = VehicleUpdatingVariableListener
.class,
 sources = {@PlanningVariableReference(variableName = "previousStandstill"
)})
 public Vehicle getVehicle() {
 return vehicle;
 }

Register this class as a planning entity if it isn’t already. Otherwise OptaPlanner won’t detect it and
the shadow variable won’t update.

The source’s variableName is the (genuine or shadow) variable that triggers changes to this shadow
variable. If the source variable’s class is different than the shadow variable’s class, also specify the
entityClass in the @PlanningVariableReference annotation and make sure the shadow variable’s
class is registered as a planning entity.

Implement the VariableListener interface. For example, the VehicleUpdatingVariableListener
assures that every Customer in a chain has the same Vehicle, namely the chain’s anchor.

196

public class VehicleUpdatingVariableListener implements VariableListener<Customer> {

 public void afterEntityAdded(ScoreDirector scoreDirector, Customer customer) {
 updateVehicle(scoreDirector, customer);
 }

 public void afterVariableChanged(ScoreDirector scoreDirector, Customer customer) {
 updateVehicle(scoreDirector, customer);
 }

 ...

 protected void updateVehicle(ScoreDirector scoreDirector, Customer sourceCustomer)
{
 Standstill previousStandstill = sourceCustomer.getPreviousStandstill();
 Vehicle vehicle = previousStandstill == null ? null : previousStandstill
.getVehicle();
 Customer shadowCustomer = sourceCustomer;
 while (shadowCustomer != null && shadowCustomer.getVehicle() != vehicle) {
 scoreDirector.beforeVariableChanged(shadowCustomer, "vehicle");
 shadowCustomer.setVehicle(vehicle);
 scoreDirector.afterVariableChanged(shadowCustomer, "vehicle");
 shadowCustomer = shadowCustomer.getNextCustomer();
 }
 }

}

A VariableListener can only change shadow variables. It must never change a
genuine planning variable or a problem fact.

Any change of a shadow variable must be told to the ScoreDirector with before*()
and after*() methods.

If one VariableListener changes two shadow variables (because having two separate
VariableListeners would be inefficient), then annotate only the first shadow variable with the
variableListenerClass and let the other shadow variable(s) reference the first shadow variable:

197

 @PlanningVariable(...)
 public Standstill getPreviousStandstill() {
 return previousStandstill;
 }

 @CustomShadowVariable(variableListenerClass =
TransportTimeAndCapacityUpdatingVariableListener.class,
 sources = {@PlanningVariableReference(variableName = "previousStandstill"
)})
 public Integer getTransportTime() {
 return transportTime;
 }

 @CustomShadowVariable(variableListenerRef = @PlanningVariableReference
(variableName = "transportTime"))
 public Integer getCapacity() {
 return capacity;
 }

A shadow variable’s value (just like a genuine variable’s value) isn’t planning cloned by the default
solution cloner, unless it can easily prove that it must be planning cloned (for example the property
type is a planning entity class). Specifically shadow variables of type List, Set, Collection or Map
usually need to be planning cloned to avoid corrupting the best solution when the working solution
changes. To planning clone a shadow variable, add @DeepPlanningClone annotation:

 @DeepPlanningClone
 @CustomShadowVariable(...)
 private Map<LocalDateTime, Integer> usedManHoursPerDayMap;

8.5. VariableListener triggering order
All shadow variables are triggered by a VariableListener, regardless if it’s a built-in or a custom
shadow variable. The genuine and shadow variables form a graph, that determines the order in
which the afterEntityAdded(), afterVariableChanged() and afterEntityRemoved() methods are called:

198

In the example above, D could have also been ordered after E (or F) because there
is no direct or indirect dependency between D and E (or F).

OptaPlanner guarantees that:

• The first VariableListener's after*() methods trigger after the last genuine variable has
changed. Therefore the genuine variables (A and B in the example above) are guaranteed to be
in a consistent state across all its instances (with values A1, A2 and B1 in the example above)
because the entire Move has been applied.

• The second VariableListener's after*() methods trigger after the last first shadow variable has
changed. Therefore the first shadow variable (C in the example above) are guaranteed to be in a
consistent state across all its instances (with values C1 and C2 in the example above). And of
course the genuine variables too.

• And so forth.

OptaPlanner does not guarantee the order in which the after*() methods are called for the
sameVariableListener with different parameters (such as A1 and A2 in the example above),
although they are likely to be in the order in which they were affected.

By default, OptaPlanner does not guarantee that the events are unique. For example, if a shadow
variable on an entity is changed twice in the same move (for example by two different genuine
variables), then that will cause the same event twice on the VariableListeners that are listening to
that original shadow variable. To avoid dealing with that complexity, overwrite the method

199

requiresUniqueEntityEvents() to receive unique events at the cost of a small performance penalty:

public class StartTimeUpdatingVariableListener implements VariableListener<Task> {

 @Override
 public boolean requiresUniqueEntityEvents() {
 return true;
 }

 ...
}

200

Chapter 9. Optimization algorithms

9.1. Search space size in the real world
The number of possible solutions for a planning problem can be mind blowing. For example:

• Four queens has 256 possible solutions (4^4) and two optimal solutions.

• Five queens has 3125 possible solutions (5^5) and one optimal solution.

• Eight queens has 16777216 possible solutions (8^8) and 92 optimal solutions.

• 64 queens has more than 10^115 possible solutions (64^64).

• Most real-life planning problems have an incredible number of possible solutions and only one
or a few optimal solutions.

For comparison: the minimal number of atoms in the known universe (10^80). As a planning
problem gets bigger, the search space tends to blow up really fast. Adding only one extra planning
entity or planning value can heavily multiply the running time of some algorithms.

Calculating the number of possible solutions depends on the design of the domain model:

201

This search space size calculation includes infeasible solutions (if they can be
represented by the model), because:

• The optimal solution might be infeasible.

• There are many types of hard constraints that cannot be incorporated in the
formula practically. For example, in Cloud Balancing, try incorporating the CPU
capacity constraint in the formula.

Even in cases where adding some of the hard constraints in the formula is
practical (for example, Course Scheduling), the resulting search space is still huge.

An algorithm that checks every possible solution (even with pruning, such as in Branch And Bound)
can easily run for billions of years on a single real-life planning problem. The aim is to find the best
solution in the available timeframe. Planning competitions (such as the International Timetabling
Competition) show that Local Search variations (Tabu Search, Simulated Annealing, Late
Acceptance, …) usually perform best for real-world problems given real-world time limitations.

9.2. Does OptaPlanner find the optimal solution?
The business wants the optimal solution, but they also have other requirements:

• Scale out: Large production data sets must not crash and have also good results.

202

• Optimize the right problem: The constraints must match the actual business needs.

• Available time: The solution must be found in time, before it becomes useless to execute.

• Reliability: Every data set must have at least a decent result (better than a human planner).

Given these requirements, and despite the promises of some salesmen, it is usually impossible for
anyone or anything to find the optimal solution. Therefore, OptaPlanner focuses on finding the best
solution in available time. In "realistic, independent competitions", it often comes out as the best
reusable software.

The nature of NP-complete problems make scaling a prime concern.

The quality of a result from a small data set is no indication of the quality of a
result from a large data set.

Scaling issues cannot be mitigated by hardware purchases later on. Start testing with a production
sized data set as soon as possible. Do not assess quality on small data sets (unless production
encounters only such data sets). Instead, solve a production sized data set and compare the results
of longer executions, different algorithms and - if available - the human planner.

9.3. Architecture overview
OptaPlanner is the first framework to combine optimization algorithms (metaheuristics, …) with
score calculation by a rule engine (such as Drools Expert). This combination is very efficient,
because:

• A rule engine, such as Drools Expert, is great for calculating the score of a solution of a
planning problem. It makes it easy and scalable to add additional soft or hard constraints such
as, "a teacher should not teach more than seven hours a day". It does delta-based score
calculation without any extra code. However it tends to be not suitable to actually find new
solutions.

• An optimization algorithm is great at finding new improving solutions for a planning
problem, without necessarily brute-forcing every possibility. However, it needs to know the
score of a solution and offers no support in calculating that score efficiently.

203

9.4. Optimization algorithms overview
OptaPlanner supports three families of optimization algorithms: Exhaustive Search, Construction
Heuristics and Metaheuristics. In practice, Metaheuristics (in combination with Construction
Heuristics to initialize) are the recommended choice:

204

Each of these algorithm families have multiple optimization algorithms:

Table 4. Optimization Algorithms Overview

Algorithm Scalable? Optimal? Easy to use? Tweakable? Requires CH?

Exhaustive Search (ES)

 Brute Force 0/5 5/5 5/5 0/5 No

 Branch And
Bound

0/5 5/5 4/5 2/5 No

Construction heuristics (CH)

 First Fit 5/5 1/5 5/5 1/5 No

 First Fit
Decreasing

5/5 2/5 4/5 2/5 No

 Weakest Fit 5/5 2/5 4/5 2/5 No

 Weakest Fit
Decreasing

5/5 2/5 4/5 2/5 No

 Strongest Fit 5/5 2/5 4/5 2/5 No

 Strongest Fit
Decreasing

5/5 2/5 4/5 2/5 No

205

Algorithm Scalable? Optimal? Easy to use? Tweakable? Requires CH?

 Cheapest
Insertion

3/5 2/5 5/5 2/5 No

 Regret
Insertion

3/5 2/5 5/5 2/5 No

Metaheuristics (MH)

 Local Search (LS)

 Hill Climbing 5/5 2/5 4/5 3/5 Yes

 Tabu Search 5/5 4/5 3/5 5/5 Yes

 Simulated
Annealing

5/5 4/5 2/5 5/5 Yes

 Late
Acceptance

5/5 4/5 3/5 5/5 Yes

 Great Deluge 5/5 4/5 3/5 5/5 Yes

 Step
Counting Hill
Climbing

5/5 4/5 3/5 5/5 Yes

 Variable
Neighborhood
Descent

3/5 3/5 2/5 5/5 Yes

 Evolutionary Algorithms (EA)

 Evolutionary
Strategies

3/5 3/5 2/5 5/5 Yes

 Genetic
Algorithms

3/5 3/5 2/5 5/5 Yes

To learn more about metaheuristics, see Essentials of Metaheuristics or Clever Algorithms.

9.5. Which optimization algorithms should I use?
The best optimization algorithms configuration to use depends heavily on your use case. However,
this basic procedure provides a good starting configuration that will produce better than average
results.

1. Start with a quick configuration that involves little or no configuration and optimization code:
See First Fit.

2. Next, implement planning entity difficulty comparison and turn it into First Fit Decreasing.

3. Next, add Late Acceptance behind it:

a. First Fit Decreasing.

b. Late Acceptance.

206

http://www.cs.gmu.edu/~sean/book/metaheuristics/
http://www.cleveralgorithms.com/

At this point, the return on invested time lowers and the result is likely to be sufficient.

However, this can be improved at a lower return on invested time. Use the Benchmarker and try a
couple of different Tabu Search, Simulated Annealing and Late Acceptance configurations, for
example:

1. First Fit Decreasing: Tabu Search.

Use the Benchmarker to improve the values for the size parameters.

Other experiments can also be run. For example, the following multiple algorithms can be
combined together:

1. First Fit Decreasing

2. Late Acceptance (relatively long time)

3. Tabu Search (relatively short time)

9.6. Power tweaking or default parameter values
Many optimization algorithms have parameters that affect results and scalability. OptaPlanner
applies configuration by exception, so all optimization algorithms have default parameter values.
This is very similar to the Garbage Collection parameters in a JVM: most users have no need to
tweak them, but power users often do.

The default parameter values are sufficient for many cases (and especially for prototypes), but if
development time allows, it may be beneficial to power tweak them with the benchmarker for
better results and scalability on a specific use case. The documentation for each optimization
algorithm also declares the advanced configuration for power tweaking.

The default value of parameters will change between minor versions, to improve
them for most users. The advanced configuration can be used to prevent
unwanted changes, however, this is not recommended.

9.7. Solver phase
A Solver can use multiple optimization algorithms in sequence. Each optimization algorithm is
represented by one solver Phase. There is never more than one Phase solving at the same time.

Some Phase implementations can combine techniques from multiple optimization
algorithms, but it is still just one Phase. For example: a Local Search Phase can do
Simulated Annealing with entity Tabu.

Here is a configuration that runs three phases in sequence:

207

<solver>
 ...
 <constructionHeuristic>
 ... <!-- First phase: First Fit Decreasing -->
 </constructionHeuristic>
 <localSearch>
 ... <!-- Second phase: Late Acceptance -->
 </localSearch>
 <localSearch>
 ... <!-- Third phase: Tabu Search -->
 </localSearch>
</solver>

The solver phases are run in the order defined by solver configuration.

• When the first Phase terminates, the second Phase starts, and so on.

• When the last Phase terminates, the Solver terminates.

Usually, a Solver will first run a construction heuristic and then run one or multiple metaheuristics:

If no phases are configured, OptaPlanner will default to a Construction Heuristic phase followed by
a Local Search phase.

208

Some phases (especially construction heuristics) will terminate automatically. Other phases
(especially metaheuristics) will only terminate if the Phase is configured to terminate:

<solver>
 ...
 <termination><!-- Solver termination -->
 <secondsSpentLimit>90</secondsSpentLimit>
 </termination>
 <localSearch>
 <termination><!-- Phase termination -->
 <secondsSpentLimit>60</secondsSpentLimit><!-- Give the next phase a chance to
run too, before the Solver terminates -->
 </termination>
 ...
 </localSearch>
 <localSearch>
 ...
 </localSearch>
</solver>

If the Solver terminates (before the last Phase terminates itself), the current phase is terminated and
all subsequent phases will not run.

9.8. Scope overview
A solver will iteratively run phases. Each phase will usually iteratively run steps. Each step, in turn,
usually iteratively runs moves. These form four nested scopes:

1. Solver

2. Phase

3. Step

4. Move

209

Configure logging to display the log messages of each scope.

9.9. Termination
Not all phases terminate automatically and may take a significant amount of time. A Solver can be
terminated synchronously by up-front configuration, or asynchronously from another thread.

Metaheuristic phases in particular need to be instructed to stop solving. This can be because of a
number of reasons, for example, if the time is up, or the perfect score has been reached just before
its solution is used. Finding the optimal solution cannot be relied on (unless you know the optimal
score), because a metaheuristic algorithm is generally unaware of the optimal solution.

This is not an issue for real-life problems, as finding the optimal solution may take more time than
is available. Finding the best solution in the available time is the most important outcome.

If no termination is configured (and a metaheuristic algorithm is used), the Solver
will run forever, until terminateEarly() is called from another thread. This is
especially common during real-time planning.

For synchronous termination, configure a Termination on a Solver or a Phase when it needs to stop.
The built-in implementations of these should be sufficient, but custom terminations are supported
too. Every Termination can calculate a time gradient (needed for some optimization algorithms),
which is a ratio between the time already spent solving and the estimated entire solving time of the

210

Solver or Phase.

9.9.1. Time spent termination

Terminates when an amount of time has been used.

 <termination>
 <!-- 2 minutes and 30 seconds in ISO 8601 format P[n]Y[n]M[n]DT[n]H[n]M[n]S -->
 <spentLimit>PT2M30S</spentLimit>
 </termination>

Alternatively to a java.util.Duration in ISO 8601 format, you can also use:

• Milliseconds

 <termination>
 <millisecondsSpentLimit>500</millisecondsSpentLimit>
 </termination>

• Seconds

 <termination>
 <secondsSpentLimit>10</secondsSpentLimit>
 </termination>

• Minutes

 <termination>
 <minutesSpentLimit>5</minutesSpentLimit>
 </termination>

• Hours

 <termination>
 <hoursSpentLimit>1</hoursSpentLimit>
 </termination>

• Days

 <termination>
 <daysSpentLimit>2</daysSpentLimit>
 </termination>

211

Multiple time types can be used together, for example to configure 150 minutes, either configure it
directly:

 <termination>
 <minutesSpentLimit>150</minutesSpentLimit>
 </termination>

Or use a combination that sums up to 150 minutes:

 <termination>
 <hoursSpentLimit>2</hoursSpentLimit>
 <minutesSpentLimit>30</minutesSpentLimit>
 </termination>

This Termination will most likely sacrifice perfect reproducibility (even with
environmentMode REPRODUCIBLE) because the available CPU time differs frequently
between runs:

• The available CPU time influences the number of steps that can be taken,
which might be a few more or less.

• The Termination might produce slightly different time gradient values, which
will send time gradient-based algorithms (such as Simulated Annealing) on a
radically different path.

9.9.2. Unimproved time spent termination

Terminates when the best score has not improved in a specified amount of time. Each time a new
best solution is found, the timer basically resets.

 <localSearch>
 <termination>
 <!-- 2 minutes and 30 seconds in ISO 8601 format P[n]Y[n]M[n]DT[n]H[n]M[n]S -->
 <unimprovedSpentLimit>PT2M30S</unimprovedSpentLimit>
 </termination>
 </localSearch>

Alternatively to a java.util.Duration in ISO 8601 format, you can also use:

• Milliseconds

 <localSearch>
 <termination>
 <unimprovedMillisecondsSpentLimit>500</unimprovedMillisecondsSpentLimit>
 </termination>
 </localSearch>

212

• Seconds

 <localSearch>
 <termination>
 <unimprovedSecondsSpentLimit>10</unimprovedSecondsSpentLimit>
 </termination>
 </localSearch>

• Minutes

 <localSearch>
 <termination>
 <unimprovedMinutesSpentLimit>5</unimprovedMinutesSpentLimit>
 </termination>
 </localSearch>

• Hours

 <localSearch>
 <termination>
 <unimprovedHoursSpentLimit>1</unimprovedHoursSpentLimit>
 </termination>
 </localSearch>

• Days

 <localSearch>
 <termination>
 <unimprovedDaysSpentLimit>1</unimprovedDaysSpentLimit>
 </termination>
 </localSearch>

Just like time spent termination, combinations are summed up.

This termination should not be applied to Construction Heuristics as they only update the best
solution at the end. Configuring it on a specific Phase (such as <localSearch>), instead of on the
Solver itself is often a better option.

213

This Termination will most likely sacrifice perfect reproducibility (even with
environmentMode REPRODUCIBLE) as the available CPU time differs frequently between
runs:

• The available CPU time influences the number of steps that can be taken,
which might be a few more or less.

• The Termination might produce slightly different time gradient values, which
will send time gradient based algorithms (such as Simulated Annealing) on a
radically different path.

Optionally, configure a score difference threshold by which the best score must improve in the
specified time. For example, if the score doesn’t improve by at least 100 soft points every 30 seconds
or less, it terminates:

 <localSearch>
 <termination>
 <unimprovedSecondsSpentLimit>30</unimprovedSecondsSpentLimit>
 <unimprovedScoreDifferenceThreshold>
0hard/100soft</unimprovedScoreDifferenceThreshold>
 </termination>
 </localSearch>

If the score improves by 1 hard point and drops 900 soft points, it’s still meets the threshold,
because 1hard/-900soft is larger than the threshold 0hard/100soft.

On the other hand, a threshold of 1hard/0soft is not met by any new best solution that improves 1
hard point at the expense of 1 or more soft points, because 1hard/-100soft is smaller than the
threshold 1hard/0soft.

To require a feasibility improvement every 30 seconds while avoiding the pitfall above, use a
wildcard * for lower score levels that are allowed to deteriorate if a higher score level improves:

 <localSearch>
 <termination>
 <unimprovedSecondsSpentLimit>30</unimprovedSecondsSpentLimit>
 <unimprovedScoreDifferenceThreshold>
1hard/*soft</unimprovedScoreDifferenceThreshold>
 </termination>
 </localSearch>

This effectively implies a threshold of 1hard/-2147483648soft, because it relies on Integer.MIN_VALUE.

9.9.3. BestScoreTermination

BestScoreTermination terminates when a certain score has been reached. Use this Termination where
the perfect score is known, for example for four queens (which uses a SimpleScore):

214

 <termination>
 <bestScoreLimit>0</bestScoreLimit>
 </termination>

A planning problem with a HardSoftScore may look like this:

 <termination>
 <bestScoreLimit>0hard/-5000soft</bestScoreLimit>
 </termination>

A planning problem with a BendableScore with three hard levels and one soft level may look like
this:

 <termination>
 <bestScoreLimit>[0/0/0]hard/[-5000]soft</bestScoreLimit>
 </termination>

In this instance, Termination once a feasible solution has been reached is not practical because it
requires a bestScoreLimit such as 0hard/-2147483648soft. Use the next termination instead.

9.9.4. BestScoreFeasibleTermination

Terminates as soon as a feasible solution has been discovered. Requires that Score implements
FeasibilityScore.

 <termination>
 <bestScoreFeasible>true</bestScoreFeasible>
 </termination>

This Termination is usually combined with other terminations.

9.9.5. StepCountTermination

Terminates when a number of steps has been reached. This is useful for hardware performance
independent runs.

 <localSearch>
 <termination>
 <stepCountLimit>100</stepCountLimit>
 </termination>
 </localSearch>

This Termination can only be used for a Phase (such as <localSearch>), not for the Solver itself.

215

9.9.6. UnimprovedStepCountTermination

Terminates when the best score has not improved in a number of steps. This is useful for hardware
performance independent runs.

 <localSearch>
 <termination>
 <unimprovedStepCountLimit>100</unimprovedStepCountLimit>
 </termination>
 </localSearch>

If the score has not improved recently, it is unlikely to improve in a reasonable timeframe. It has
been observed that once a new best solution is found (even after a long time without improvement
on the best solution), the next few steps tend to improve the best solution.

This Termination can only be used for a Phase (such as <localSearch>), not for the Solver itself.

9.9.7. ScoreCalculationCountTermination

ScoreCalculationCountTermination terminates when a number of score calculations have been
reached. This is often the sum of the number of moves and the number of steps. This is useful for
benchmarking.

 <termination>
 <scoreCalculationCountLimit>100000</scoreCalculationCountLimit>
 </termination>

Switching EnvironmentMode can heavily impact when this termination ends.

9.9.8. Combining multiple terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

 <termination>
 <terminationCompositionStyle>OR</terminationCompositionStyle>
 <stepCountLimit>100</stepCountLimit>
 <bestScoreLimit>0</bestScoreLimit>
 </termination>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least -100
and no improvements in 5 steps:

216

 <termination>
 <terminationCompositionStyle>AND</terminationCompositionStyle>
 <unimprovedStepCountLimit>5</unimprovedStepCountLimit>
 <bestScoreLimit>-100</bestScoreLimit>
 </termination>

This example ensures it does not just terminate after finding a feasible solution, but also completes
any obvious improvements on that solution before terminating.

9.9.9. Asynchronous termination from another thread

Asynchronous termination from another thread occurs when a Solver needs to be terminated early
from another thread, for example, due to a user action or a server restart. This cannot be
configured by a Termination as it is impossible to predict when and if it will occur. Therefore the
Solver interface has the following thread-safe methods:

public interface Solver<Solution_> {
 ...

 boolean terminateEarly();
 boolean isTerminateEarly();

}

When calling the terminateEarly() method from another thread, the Solver will terminate at its
earliest convenience and the solve(Solution) method will return (in the original Solver thread).

Interrupting the Solver thread (which is the thread that called
Solver.solve(Solution)) has the same effect as calling terminateEarly() except that
it leaves that thread in the interrupted state. This guarantees a graceful shutdown
when an ExecutorService (such as a thread pool) is shutdown because that only
interrupts all active threads in the pool.

9.10. SolverEventListener
Each time a new best solution is found, a new BestSolutionChangedEvent is fired in the Solver thread.

To listen to such events, add a SolverEventListener to the Solver:

217

public interface Solver<Solution_> {
 ...

 void addEventListener(SolverEventListener<S> eventListener);
 void removeEventListener(SolverEventListener<S> eventListener);

}

The BestSolutionChangedEvent's newBestSolution may not be initialized or feasible. Use the
isFeasible() method on BestSolutionChangedEvent's new best Score to detect such cases:

 solver.addEventListener(new SolverEventListener<CloudBalance>() {
 public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event)
{
 // Ignore infeasible (including uninitialized) solutions
 if (event.getNewBestSolution().getScore().isFeasible()) {
 ...
 }
 }
 });

Use Score.isSolutionInitialized() instead of Score.isFeasible() to only ignore uninitialized
solutions, but also accept infeasible solutions.

The bestSolutionChanged() method is called in the solver’s thread, as part of
Solver.solve(). So it should return quickly to avoid slowing down the solving.

9.11. Custom solver phase
Run a custom optimization algorithm between phases or before the first phase to initialize the
solution, or to get a better score quickly. You will still want to reuse the score calculation. For
example, to implement a custom Construction Heuristic without implementing an entire Phase.

Most of the time, a custom solver phase is not worth the development time
investment. The supported Constructions Heuristics are configurable (use the
Benchmarker to tweak them), Termination aware and support partially initialized
solutions too.

The CustomPhaseCommand interface appears as follows:

218

public interface CustomPhaseCommand<Solution_> {
 ...

 void changeWorkingSolution(ScoreDirector<Solution_> scoreDirector);

}

For example, extend AbstractCustomPhaseCommand and implement the changeWorkingSolution()
method:

public class ToOriginalMachineSolutionInitializer extends AbstractCustomPhaseCommand
<MachineReassignment> {

 public void changeWorkingSolution(ScoreDirector<MachineReassignment>
scoreDirector) {
 MachineReassignment machineReassignment = scoreDirector.getWorkingSolution();
 for (MrProcessAssignment processAssignment : machineReassignment
.getProcessAssignmentList()) {
 scoreDirector.beforeVariableChanged(processAssignment, "machine");
 processAssignment.setMachine(processAssignment.getOriginalMachine());
 scoreDirector.afterVariableChanged(processAssignment, "machine");
 scoreDirector.triggerVariableListeners();
 }
 }

}

Any change on the planning entities in a CustomPhaseCommand must be notified to the
ScoreDirector.

Do not change any of the problem facts in a CustomPhaseCommand. That will corrupt
the Solver because any previous score or solution was for a different problem. To
do that, read about repeated planning and do it with a ProblemFactChange
instead.

Configure the CustomPhaseCommand in the solver configuration:

<solver>
 ...
 <customPhase>

<customPhaseCommandClass>org.optaplanner.examples.machinereassignment.solver.solution.
initializer.ToOriginalMachineSolutionInitializer</customPhaseCommandClass>
 </customPhase>
 ... <!-- Other phases -->
</solver>

219

Configure multiple customPhaseCommandClass instances to run them in sequence.

If the changes of a CustomPhaseCommand do not result in a better score, the best
solution will not be changed (so effectively nothing will have changed for the next
Phase or CustomPhaseCommand).

If the Solver or a Phase wants to terminate while a CustomPhaseCommand is still
running, it waits to terminate until the CustomPhaseCommand is complete. This may
take a significant amount of time. The built-in solver phases do not have this issue.

To configure values of a CustomPhaseCommand dynamically in the solver configuration (so the
Benchmarker can tweak those parameters), add the customProperties element and use custom
properties:

 <customPhase>
 <customPhaseCommandClass>...MyCustomPhase</customPhaseCommandClass>
 <customProperties>
 <mySelectionSize>5</mySelectionSize>
 </customProperties>
 </customPhase>

9.12. No change solver phase
In rare cases, it’s useful not to run any solver phases. But by default, configuring no phase will
trigger running the default phases. To avoid those, configure a NoChangePhase:

<solver>
 ...
 <noChangePhase/>
</solver>

9.13. Multithreaded solving
There are several ways of doing multithreaded solving:

• Multitenancy: solve different datasets in parallel

◦ The SolverManager will make it even easier to set this up, in a future version.

• Multi bet solving: solve 1 dataset with multiple, isolated solvers and take the best result.

◦ Not recommended: This is a marginal gain for a high cost of hardware resources.

◦ Use the Benchmarker during development to determine the most appropriate algorithm,
although that’s only on average.

◦ Use multithreaded incremental solving instead.

• Partitioned Search: Split 1 dataset in multiple parts and solve them independently.

220

◦ Configure a Partitioned Search.

• Multithreaded incremental solving: solve 1 dataset with multiple threads without sacrificing
incremental score calculation.

◦ Donate a portion of your CPU cores to OptaPlanner to scale up the score calculation speed
and get the same results in fraction of the time.

◦ Configure multithreaded incremental solving.

A logging level of debug or trace might cause congestion multithreaded solving and
slow down the score calculation speed.

9.13.1. @PlanningId

For some functionality (such as multithreaded solving and real-time planning), OptaPlanner needs
to map problem facts and planning entities to an ID. OptaPlanner uses that ID to rebase a move
from one thread’s solution state to another’s.

To enable such functionality, specify the @PlanningId annotation on the identification field or getter
method, for example on the database ID:

221

public class CloudComputer {

 @PlanningId
 private Long id;

 ...
}

Or alternatively, on another type of ID:

public class User {

 @PlanningId
 private String username;

 ...
}

A @PlanningId property must be:

• Unique for that specific class

◦ It does not need to be unique across different problem fact classes (unless in that rare case
that those classes are mixed in the same value range or planning entity collection).

• An instance of a type that implements Object.hashCode() and Object.equals().

◦ It’s recommended to use the type Integer, int, Long, long, String or UUID.

• Never null by the time Solver.solve() is called.

9.13.2. Custom thread factory (WildFly, Android, GAE, …)

The threadFactoryClass allows to plug in a custom ThreadFactory for environments where arbitrary
thread creation should be avoided, such as most application servers (including WildFly), Android,
or Google App Engine.

Configure the ThreadFactory on the solver to create the move threads and the Partition Search
threads with it:

<solver>
 <threadFactoryClass>...MyAppServerThreadFactory</threadFactoryClass>
 ...
</solver>

9.13.3. Multithreaded incremental solving

Enable multithreaded incremental solving by adding a @PlanningId annotation on every planning
entity class and planning value class. Then configure a moveThreadCount:

222

<solver>
 <moveThreadCount>AUTO</moveThreadCount>
 ...
</solver>

That one extra line heavily improves the score calculation speed, presuming that your machine has
enough free CPU cores.

Advanced configuration:

<solver>
 <moveThreadCount>4</moveThreadCount>
 <moveThreadBufferSize>10</moveThreadBufferSize>
 <threadFactoryClass>...MyAppServerThreadFactory</threadFactoryClass>
 ...
</solver>

A moveThreadCount of 4 saturates almost 5 CPU cores: the 4 move threads fill up 4 CPU cores
completely and the solver thread uses most of another CPU core.

The following moveThreadCounts are supported:

• NONE (default): Don’t run any move threads. Use the single threaded code.

• AUTO: Let OptaPlanner decide how many move threads to run in parallel. On machines or
containers with little or no CPUs, this falls back to the single threaded code.

• Static number: The number of move threads to run in parallel.

<moveThreadCount>4</moveThreadCount>

This can be 1 to enforce running the multithreaded code with only 1 move thread (which is less
efficient than NONE).

• JavaScript formula: Formula for the number of move threads to run in parallel. It can use the
variable availableProcessorCount. For example:

<moveThreadCount>(availableProcessorCount / 2) + 1</moveThreadCount>

It is counter-effective to set a moveThreadCount that is higher than the number of available CPU cores,
as that will slow down the score calculation speed. One good reason to do it anyway, is to reproduce
a bug of a high-end production machine.

223

Multithreaded solving is still reproducible, as long as the resolved moveThreadCount
is stable. A run of the same solver configuration on 2 machines with a different
number of CPUs, is still reproducible, unless the moveThreadCount is set to AUTO or a
function of availableProcessorCount.

The moveThreadBufferSize power tweaks the number of moves that are selected but won’t be
foraged. Setting it too low reduces performance, but setting it too high too. Unless you’re deeply
familiar with the inner workings of multithreaded solving, don’t configure this parameter.

To run in an environment that doesn’t like arbitrary thread creation, use threadFactoryClass to plug
in a custom thread factory.

224

Chapter 10. Move and neighborhood
selection

10.1. Move and neighborhood introduction

10.1.1. What is a Move?

A Move is a change (or set of changes) from a solution A to a solution B. For example, the move below
changes queen C from row 0 to row 2:

The new solution is called a neighbor of the original solution, because it can be reached in a single
Move. Although a single move can change multiple queens, the neighbors of a solution should always
be a very small subset of all possible solutions. For example, on that original solution, these are all
possible changeMoves:

If we ignore the four changeMoves that have no impact and are therefore not doable, we can see that
the number of moves is n * (n - 1) = 12. This is far less than the number of possible solutions,
which is n ^ n = 256. As the problem scales out, the number of possible moves increases far less
than the number of possible solutions.

Yet, in four changeMoves or less we can reach any solution. For example we can reach a very
different solution in three changeMoves:

225

There are many other types of moves besides changeMoves. Many move types are
included out-of-the-box, but you can also implement custom moves.

A Move can affect multiple entities or even create/delete entities. But it must not
change the problem facts.

All optimization algorithms use Moves to transition from one solution to a neighbor solution.
Therefore, all the optimization algorithms are confronted with Move selection: the craft of creating
and iterating moves efficiently and the art of finding the most promising subset of random moves
to evaluate first.

10.1.2. What is a MoveSelector?

A MoveSelector's main function is to create Iterator<Move> when needed. An optimization algorithm
will iterate through a subset of those moves.

Here’s an example how to configure a changeMoveSelector for the optimization algorithm Local
Search:

 <localSearch>
 <changeMoveSelector/>
 ...
 </localSearch>

Out of the box, this works and all properties of the changeMoveSelector are defaulted sensibly
(unless that fails fast due to ambiguity). On the other hand, the configuration can be customized
significantly for specific use cases. For example: you might want to configure a filter to discard
pointless moves.

10.1.3. Subselecting of entities, values, and other moves

To create a Move, a MoveSelector needs to select one or more planning entities and/or planning
values to move. Just like MoveSelectors, EntitySelectors and ValueSelectors need to support a
similar feature set (such as scalable just-in-time selection). Therefore, they all implement a common
interface Selector and they are configured similarly.

A MoveSelector is often composed out of EntitySelectors, ValueSelectors or even other
MoveSelectors, which can be configured individually if desired:

226

 <unionMoveSelector>
 <changeMoveSelector>
 <entitySelector>
 ...
 </entitySelector>
 <valueSelector>
 ...
 </valueSelector>
 ...
 </changeMoveSelector>
 <swapMoveSelector>
 ...
 </swapMoveSelector>
 </unionMoveSelector>

Together, this structure forms a Selector tree:

The root of this tree is a MoveSelector which is injected into the optimization algorithm
implementation to be (partially) iterated in every step.

10.2. Generic MoveSelectors

227

10.2.1. Generic MoveSelectors overview

Name Description toString() example

Change move Change 1 entity’s variable Process-A {Computer-1 -> Computer-2}

Swap move Swap all variables of 2 entities Process-A {Computer-1} <-> Process-B
{Computer-2}

Pillar change
move

Change a set of entities with the same
value

[Process-A, Process-B, Process-C]
{Computer-1 -> Computer-2}

Pillar swap move Swap 2 sets of entities with the same
values

[Process-A, Process-B, Process-C]
{Computer-1} <-> [Process-E,
Process-F] {Computer-2}

Tail chain swap
move

Swap 2 tails chains Visit-A5 {Visit-A4} <-tailChainSwap-
> Visit-B3 {Visit-B2}

Sub chain change
move

Cut a subchain and paste it into
another chain

[Visit-A5..Visit-A8] {Visit-A4 ->
Visit-B2}

Sub chain swap
move

Swap 2 subchains [Visit-A5..Visit-A8] {Visit-A4} <->
[Visit-B3..Visit-B9] {Visit-B2}

10.2.2. ChangeMoveSelector

For one planning variable, the ChangeMove selects one planning entity and one planning value and
assigns the entity’s variable to that value.

228

Simplest configuration:

 <changeMoveSelector/>

If there are multiple entity classes or multiple planning variables for one entity class, a simple
configuration will automatically unfold into a union of ChangeMove selectors for every planning
variable.

Advanced configuration:

 <changeMoveSelector>
 ... <!-- Normal selector properties -->
 <entitySelector>
 <entityClass>...Lecture</entityClass>
 ...
 </entitySelector>
 <valueSelector variableName="room">
 ...
 <nearbySelection>...</nearbySelection>
 </valueSelector>
 </changeMoveSelector>

229

A ChangeMove is the finest grained move.

Almost every moveSelector configuration injected into a metaheuristic algorithm
should include a changeMoveSelector. This guarantees that every possible solution
can be reached in theory through applying a number of moves in sequence. Of
course, normally it is unioned with other, more coarse grained move selectors.

This move selector only supports phase or solver caching if it doesn’t apply on a chained variable.

10.2.3. SwapMoveSelector

The SwapMove selects two different planning entities and swaps the planning values of all their
planning variables.

Although a SwapMove on a single variable is essentially just two ChangeMoves, it’s often the winning
step in cases that the first of the two ChangeMoves would not win because it leaves the solution in a
state with broken hard constraints. For example: swapping the room of two lectures doesn’t bring
the solution in an intermediate state where both lectures are in the same room which breaks a hard
constraint.

Simplest configuration:

 <swapMoveSelector/>

230

If there are multiple entity classes, a simple configuration will automatically unfold into a union of
SwapMove selectors for every entity class.

Advanced configuration:

 <swapMoveSelector>
 ... <!-- Normal selector properties -->
 <entitySelector>
 <entityClass>...Lecture</entityClass>
 ...
 </entitySelector>
 <secondaryEntitySelector>
 <entityClass>...Lecture</entityClass>
 ...
 <nearbySelection>...</nearbySelection>
 </secondaryEntitySelector>
 <variableNameInclude>room</variableNameInclude>
 <variableNameInclude>...</variableNameInclude>
 </swapMoveSelector>

The secondaryEntitySelector is rarely needed: if it is not specified, entities from the same
entitySelector are swapped.

If one or more variableNameInclude properties are specified, not all planning variables will be
swapped, but only those specified. For example for course scheduling, specifying only
variableNameInclude room will make it only swap room, not period.

This move selector only supports phase or solver caching if it doesn’t apply on any chained
variables.

10.2.4. Pillar-based move selectors

A pillar is a set of planning entities which have the same planning value(s) for their planning
variable(s).

10.2.4.1. PillarChangeMoveSelector

The PillarChangeMove selects one entity pillar (or subset of those) and changes the value of one
variable (which is the same for all entities) to another value.

231

In the example above, queen A and C have the same value (row 0) and are moved to row 2. Also the
yellow and blue process have the same value (computer Y) and are moved to computer X.

Simplest configuration:

 <pillarChangeMoveSelector/>

Advanced configuration:

232

 <pillarChangeMoveSelector>
 <subPillarType>SEQUENCE</subPillarType>

<subPillarSequenceComparatorClass>org.optaplanner.examples.nurserostering.domain.Shift
AssignmentComparator</subPillarSequenceComparatorClass>
 ... <!-- Normal selector properties -->
 <pillarSelector>
 <entitySelector>
 <entityClass>...ShiftAssignment</entityClass>
 ...
 </entitySelector>
 <minimumSubPillarSize>1</minimumSubPillarSize>
 <maximumSubPillarSize>1000</maximumSubPillarSize>
 </pillarSelector>
 <valueSelector variableName="room">
 ...
 </valueSelector>
 </pillarChangeMoveSelector>

For a description of subPillarType and related properties, please refer to Subpillars.

The other properties are explained in changeMoveSelector. This move selector does not support
phase or solver caching and step caching scales badly memory wise.

10.2.4.2. PillarSwapMoveSelector

The PillarSwapMove selects two different entity pillars and swaps the values of all their variables for
all their entities.

233

Simplest configuration:

 <pillarSwapMoveSelector/>

Advanced configuration:

234

 <pillarSwapMoveSelector>
 <subPillarType>SEQUENCE</subPillarType>

<subPillarSequenceComparatorClass>org.optaplanner.examples.nurserostering.domain.Shift
AssignmentComparator</subPillarSequenceComparatorClass>
 ... <!-- Normal selector properties -->
 <pillarSelector>
 <entitySelector>
 <entityClass>...ShiftAssignment</entityClass>
 ...
 </entitySelector>
 <minimumSubPillarSize>1</minimumSubPillarSize>
 <maximumSubPillarSize>1000</maximumSubPillarSize>
 </pillarSelector>
 <secondaryPillarSelector>
 <entitySelector>
 ...
 </entitySelector>
 ...
 </secondaryPillarSelector>
 <variableNameInclude>employee</variableNameInclude>
 <variableNameInclude>...</variableNameInclude>
 </pillarSwapMoveSelector>

For a description of subPillarType and related properties, please refer to sub pillars.

The secondaryPillarSelector is rarely needed: if it is not specified, entities from the same
pillarSelector are swapped.

The other properties are explained in swapMoveSelector and pillarChangeMoveSelector. This move
selector does not support phase or solver caching and step caching scales badly memory wise.

10.2.4.3. Sub pillars

A sub pillar is a subset of entities that share the same value(s) for their variable(s). For example if
queen A, B, C and D are all located on row 0, they are a pillar and [A, D] is one of the many sub
pillars.

There are several ways how sub pillars can be selected by the subPillarType property:

• ALL (default) selects all possible sub pillars.

• SEQUENCE limits selection of sub pillars to Sequential sub pillars.

• NONE never selects any sub pillars.

If sub pillars are enabled, the pillar itself is also included and the properties minimumSubPillarSize
(defaults to 1) and maximumSubPillarSize (defaults to infinity) limit the size of the selected (sub)
pillar.

235

The number of sub pillars of a pillar is exponential to the size of the pillar. For
example a pillar of size 32 has (2^32 - 1) subpillars. Therefore a pillarSelector
only supports JIT random selection (which is the default).

10.2.4.3.1. Sequential sub pillars

Sub pillars can be sorted with a Comparator. A sequential sub pillar is a continuous subset of its
sorted base pillar.

For example if a nurse has shifts on Monday (M), Tuesday (T), and Wednesday (W), they are a pillar
and only the following are its sequential sub pillars: [M], [T], [W], [M, T], [T, W], [M, T, W]. But
[M, W] is not a sub pillar in this case, as there is a gap on Tuesday.

Sequential sub pillars apply to both Pillar change move and Pillar swap move. A minimal
configuration looks like this:

 <pillar...MoveSelector>
 <subPillarType>SEQUENCE</subPillarType>
 </pillar...MoveSelector>

In this case, the entity being operated on must implement the Comparable interface. The size of sub
pillars will not be limited in any way.

An advanced configuration looks like this:

 <pillar...MoveSelector>
 ...
 <subPillarType>SEQUENCE</subPillarType>

<subPillarSequenceComparatorClass>org.optaplanner.examples.nurserostering.domain.Shift
AssignmentComparator</subPillarSequenceComparatorClass>
 <pillarSelector>
 ...
 <minimumSubPillarSize>1</minimumSubPillarSize>
 <maximumSubPillarSize>1000</maximumSubPillarSize>
 </pillarSelector>
 ...
 </pillar...MoveSelector>

In this case, the entity being operated on need not be Comparable. The given
subPillarSequenceComparatorClass is used to establish the sequence instead. Also, the size of the sub
pillars is limited in length of up to 1000 entities.

10.2.5. Move selectors for chained variables

10.2.5.1. TailChainSwapMoveSelector or 2-opt

A tailChain is a set of planning entities with a chained planning variable which form the last part of

236

a chain. The tailChainSwapMove selects a tail chain and swaps it with the tail chain of another
planning value (in a different or the same anchor chain). If the targeted planning value, doesn’t
have a tail chain, it swaps with nothing (resulting in a change like move). If it occurs within the
same anchor chain, a partial chain reverse occurs. In academic papers, this is often called a 2-opt
move.

Simplest configuration:

 <tailChainSwapMoveSelector/>

Advanced configuration:

 <tailChainSwapMoveSelector>
 ... <!-- Normal selector properties -->
 <entitySelector>
 <entityClass>...Customer</entityClass>
 ...
 </entitySelector>
 <valueSelector variableName="previousStandstill">
 ...
 <nearbySelection>...</nearbySelection>
 </valueSelector>
 </tailChainSwapMoveSelector>

The entitySelector selects the start of the tail chain that is being moved. The valueSelector selects
to where that tail chain is moved. If it has a tail chain itself, that is moved to the location of the
original tail chain. It uses a valueSelector instead of a secondaryEntitySelector to be able to include
all possible 2opt moves (such as moving to the end of a tail) and to work correctly with nearby
selection (because of asymmetric distances and also swapped entity distance gives an incorrect
selection probability).

Although subChainChangeMoveSelector and subChainSwapMoveSelector include almost
every possible tailChainSwapMove, experiments have shown that focusing on
tailChainSwapMoves increases efficiency.

This move selector does not support phase or solver caching.

10.2.5.2. SubChainChangeMoveSelector

A subChain is a set of planning entities with a chained planning variable which form part of a
chain. The subChainChangeMoveSelector selects a subChain and moves it to another place (in a
different or the same anchor chain).

Simplest configuration:

 <subChainChangeMoveSelector/>

237

Advanced configuration:

 <subChainChangeMoveSelector>
 ... <!-- Normal selector properties -->
 <entityClass>...Customer</entityClass>
 <subChainSelector>
 <valueSelector variableName="previousStandstill">
 ...
 </valueSelector>
 <minimumSubChainSize>2</minimumSubChainSize>
 <maximumSubChainSize>40</maximumSubChainSize>
 </subChainSelector>
 <valueSelector variableName="previousStandstill">
 ...
 </valueSelector>
 <selectReversingMoveToo>true</selectReversingMoveToo>
 </subChainChangeMoveSelector>

The subChainSelector selects a number of entities, no less than minimumSubChainSize (defaults to 1)
and no more than maximumSubChainSize (defaults to infinity).

If minimumSubChainSize is 1 (which is the default), this selector might select the same
move as a ChangeMoveSelector, at a far lower selection probability (because each
move type has the same selection chance by default (not every move instance) and
there are far more SubChainChangeMove instances than ChangeMove instances).
However, don’t just remove the ChangeMoveSelector, because experiments show
that it’s good to focus on ChangeMoves.

Furthermore, in a SubChainSwapMoveSelector, setting minimumSubChainSize prevents
swapping a subchain of size 1 with a subchain of size 2 or more.

The selectReversingMoveToo property (defaults to true) enables selecting the reverse of every
subchain too.

This move selector does not support phase or solver caching and step caching scales badly memory
wise.

10.2.5.3. SubChainSwapMoveSelector

The subChainSwapMoveSelector selects two different subChains and moves them to another place in a
different or the same anchor chain.

Simplest configuration:

 <subChainSwapMoveSelector/>

Advanced configuration:

238

 <subChainSwapMoveSelector>
 ... <!-- Normal selector properties -->
 <entityClass>...Customer</entityClass>
 <subChainSelector>
 <valueSelector variableName="previousStandstill">
 ...
 </valueSelector>
 <minimumSubChainSize>2</minimumSubChainSize>
 <maximumSubChainSize>40</maximumSubChainSize>
 </subChainSelector>
 <secondarySubChainSelector>
 <valueSelector variableName="previousStandstill">
 ...
 </valueSelector>
 <minimumSubChainSize>2</minimumSubChainSize>
 <maximumSubChainSize>40</maximumSubChainSize>
 </secondarySubChainSelector>
 <selectReversingMoveToo>true</selectReversingMoveToo>
 </subChainSwapMoveSelector>

The secondarySubChainSelector is rarely needed: if it is not specified, entities from the same
subChainSelector are swapped.

The other properties are explained in subChainChangeMoveSelector. This move selector does not
support phase or solver caching and step caching scales badly memory wise.

10.3. Combining multiple MoveSelectors

10.3.1. unionMoveSelector

A unionMoveSelector selects a Move by selecting one of its MoveSelector children to supply the next
Move.

Simplest configuration:

 <unionMoveSelector>
 <...MoveSelector/>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </unionMoveSelector>

Advanced configuration:

239

 <unionMoveSelector>
 ... <!-- Normal selector properties -->
 <selectorProbabilityWeightFactoryClass>
...ProbabilityWeightFactory</selectorProbabilityWeightFactoryClass>
 <changeMoveSelector>
 <fixedProbabilityWeight>...</fixedProbabilityWeight>
 ...
 </changeMoveSelector>
 <swapMoveSelector>
 <fixedProbabilityWeight>...</fixedProbabilityWeight>
 ...
 </swapMoveSelector>
 <...MoveSelector>
 <fixedProbabilityWeight>...</fixedProbabilityWeight>
 ...
 </...MoveSelector>
 ...
 </unionMoveSelector>

The selectorProbabilityWeightFactory determines in selectionOrder RANDOM how often a
MoveSelector child is selected to supply the next Move. By default, each MoveSelector child has the
same chance of being selected.

240

Change the fixedProbabilityWeight of such a child to select it more often. For example, the
unionMoveSelector can return a SwapMove twice as often as a ChangeMove:

 <unionMoveSelector>
 <changeMoveSelector>
 <fixedProbabilityWeight>1.0</fixedProbabilityWeight>
 ...
 </changeMoveSelector>
 <swapMoveSelector>
 <fixedProbabilityWeight>2.0</fixedProbabilityWeight>
 ...
 </swapMoveSelector>
 </unionMoveSelector>

The number of possible ChangeMoves is very different from the number of possible SwapMoves and
furthermore it’s problem dependent. To give each individual Move the same selection chance (as
opposed to each MoveSelector), use the FairSelectorProbabilityWeightFactory:

 <unionMoveSelector>

<selectorProbabilityWeightFactoryClass>org.optaplanner.core.impl.heuristic.selector.co
mmon.decorator.FairSelectorProbabilityWeightFactory</selectorProbabilityWeightFactoryC
lass>
 <changeMoveSelector/>
 <swapMoveSelector/>
 </unionMoveSelector>

10.3.2. cartesianProductMoveSelector

A cartesianProductMoveSelector selects a new CompositeMove. It builds that CompositeMove by selecting
one Move per MoveSelector child and adding it to the CompositeMove.

Simplest configuration:

 <cartesianProductMoveSelector>
 <...MoveSelector/>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </cartesianProductMoveSelector>

Advanced configuration:

241

 <cartesianProductMoveSelector>
 ... <!-- Normal selector properties -->
 <ignoreEmptyChildIterators>true</ignoreEmptyChildIterators>
 <changeMoveSelector>
 ...
 </changeMoveSelector>
 <swapMoveSelector>
 ...
 </swapMoveSelector>
 <...MoveSelector>
 ...
 </...MoveSelector>
 ...
 </cartesianProductMoveSelector>

The ignoreEmptyChildIterators property (true by default) will ignore every empty childMoveSelector
to avoid returning no moves. For example: a cartesian product of changeMoveSelector A and B, for
which B is empty (because all it’s entities are immovable) returns no move if
ignoreEmptyChildIterators is false and the moves of A if ignoreEmptyChildIterators is true.

To enforce that two child selectors use the same entity or value efficiently, use mimic selection, not
move filtering.

10.4. EntitySelector
Simplest configuration:

 <entitySelector/>

Advanced configuration:

 <entitySelector>
 ... <!-- Normal selector properties -->
 <entityClass>
org.optaplanner.examples.curriculumcourse.domain.Lecture</entityClass>
 </entitySelector>

The entityClass property is only required if it cannot be deduced automatically because there are
multiple entity classes.

10.5. ValueSelector
Simplest configuration:

242

 <valueSelector/>

Advanced configuration:

 <valueSelector variableName="room">
 ... <!-- Normal selector properties -->
 </valueSelector>

The variableName property is only required if it cannot be deduced automatically because there are
multiple variables (for the related entity class).

In exotic Construction Heuristic configurations, the entityClass from the EntitySelector sometimes
needs to be downcasted, which can be done with the property downcastEntityClass:

 <valueSelector variableName="period">
 <downcastEntityClass>...LeadingExam</downcastEntityClass>
 </valueSelector>

If a selected entity cannot be downcasted, the ValueSelector is empty for that entity.

10.6. General Selector features

10.6.1. CacheType: create moves ahead of time or just in time

A Selector's cacheType determines when a selection (such as a Move, an entity, a value, …) is created
and how long it lives.

Almost every Selector supports setting a cacheType:

 <changeMoveSelector>
 <cacheType>PHASE</cacheType>
 ...
 </changeMoveSelector>

The following cacheTypes are supported:

• JUST_IN_TIME (default, recommended): Not cached. Construct each selection (Move, …) just before
it’s used. This scales up well in memory footprint.

• STEP: Cached. Create each selection (Move, …) at the beginning of a step and cache them in a list
for the remainder of the step. This scales up badly in memory footprint.

• PHASE: Cached. Create each selection (Move, …) at the beginning of a solver phase and cache them
in a list for the remainder of the phase. Some selections cannot be phase cached because the list
changes every step. This scales up badly in memory footprint, but has a slight performance
gain.

243

• SOLVER: Cached. Create each selection (Move, …) at the beginning of a Solver and cache them in a
list for the remainder of the Solver. Some selections cannot be solver cached because the list
changes every step. This scales up badly in memory footprint, but has a slight performance
gain.

A cacheType can be set on composite selectors too:

 <unionMoveSelector>
 <cacheType>PHASE</cacheType>
 <changeMoveSelector/>
 <swapMoveSelector/>
 ...
 </unionMoveSelector>

Nested selectors of a cached selector cannot be configured to be cached themselves, unless it’s a
higher cacheType. For example: a STEP cached unionMoveSelector can contain a PHASE cached
changeMoveSelector, but it cannot contain a STEP cached changeMoveSelector.

10.6.2. SelectionOrder: original, sorted, random, shuffled, or probabilistic

A Selector's selectionOrder determines the order in which the selections (such as Moves, entities,
values, …) are iterated. An optimization algorithm will usually only iterate through a subset of its
MoveSelector's selections, starting from the start, so the selectionOrder is critical to decide which
Moves are actually evaluated.

Almost every Selector supports setting a selectionOrder:

 <changeMoveSelector>
 ...
 <selectionOrder>RANDOM</selectionOrder>
 ...
 </changeMoveSelector>

The following selectionOrders are supported:

• ORIGINAL: Select the selections (Moves, entities, values, …) in default order. Each selection will be
selected only once.

◦ For example: A0, A1, A2, A3, …, B0, B1, B2, B3, …, C0, C1, C2, C3, …

• SORTED: Select the selections (Moves, entities, values, …) in sorted order. Each selection will be
selected only once. Requires cacheType >= STEP. Mostly used on an entitySelector or
valueSelector for construction heuristics. See sorted selection.

◦ For example: A0, B0, C0, …, A2, B2, C2, …, A1, B1, C1, …

• RANDOM (default): Select the selections (Moves, entities, values, …) in non-shuffled random
order. A selection might be selected multiple times. This scales up well in performance because
it does not require caching.

244

◦ For example: C2, A3, B1, C2, A0, C0, …

• SHUFFLED: Select the selections (Moves, entities, values, …) in shuffled random order. Each
selection will be selected only once. Requires cacheType >= STEP. This scales up badly in
performance, not just because it requires caching, but also because a random number is
generated for each element, even if it’s not selected (which is the grand majority when scaling
up).

◦ For example: C2, A3, B1, A0, C0, …

• PROBABILISTIC: Select the selections (Moves, entities, values, …) in random order, based on the
selection probability of each element. A selection with a higher probability has a higher chance
to be selected than elements with a lower probability. A selection might be selected multiple
times. Requires cacheType >= STEP. Mostly used on an entitySelector or valueSelector. See
probabilistic selection.

◦ For example: B1, B1, A1, B2, B1, C2, B1, B1, …

A selectionOrder can be set on composite selectors too.

When a Selector is cached, all of its nested Selectors will naturally default to
selectionOrder ORIGINAL. Avoid overwriting the selectionOrder of those nested
Selectors.

10.6.3. Recommended combinations of CacheType and SelectionOrder

10.6.3.1. Just in time random selection (default)

This combination is great for big use cases (10 000 entities or more), as it scales up well in memory
footprint and performance. Other combinations are often not even viable on such sizes. It works
for smaller use cases too, so it’s a good way to start out. It’s the default, so this explicit configuration
of cacheType and selectionOrder is actually obsolete:

 <unionMoveSelector>
 <cacheType>JUST_IN_TIME</cacheType>
 <selectionOrder>RANDOM</selectionOrder>

 <changeMoveSelector/>
 <swapMoveSelector/>
 </unionMoveSelector>

Here’s how it works. When Iterator<Move>.next() is called, a child MoveSelector is randomly
selected (1), which creates a random Move (2, 3, 4) and is then returned (5):

245

Notice that it never creates a list of Moves and it generates random numbers only for Moves that are
actually selected.

10.6.3.2. Cached shuffled selection

This combination often wins for small use cases (1000 entities or less). Beyond that size, it scales up
badly in memory footprint and performance.

 <unionMoveSelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SHUFFLED</selectionOrder>

 <changeMoveSelector/>
 <swapMoveSelector/>
 </unionMoveSelector>

Here’s how it works: At the start of the phase (or step depending on the cacheType), all moves are
created (1) and cached (2). When MoveSelector.iterator() is called, the moves are shuffled (3).
When Iterator<Move>.next() is called, the next element in the shuffled list is returned (4):

246

Notice that each Move will only be selected once, even though they are selected in random order.

Use cacheType PHASE if none of the (possibly nested) Selectors require STEP. Otherwise, do
something like this:

 <unionMoveSelector>
 <cacheType>STEP</cacheType>
 <selectionOrder>SHUFFLED</selectionOrder>

 <changeMoveSelector>
 <cacheType>PHASE</cacheType>
 </changeMoveSelector>
 <swapMoveSelector/>
 <cacheType>PHASE</cacheType>
 </swapMoveSelector>
 <pillarSwapMoveSelector/><!-- Does not support cacheType PHASE -->
 </unionMoveSelector>

10.6.3.3. Cached random selection

This combination is often a worthy competitor for medium use cases, especially with fast stepping
optimization algorithms (such as Simulated Annealing). Unlike cached shuffled selection, it doesn’t
waste time shuffling the moves list at the beginning of every step.

247

 <unionMoveSelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>RANDOM</selectionOrder>

 <changeMoveSelector/>
 <swapMoveSelector/>
 </unionMoveSelector>

10.6.4. Filtered selection

There can be certain moves that you don’t want to select, because:

• The move is pointless and would only waste CPU time. For example, swapping two lectures of
the same course will result in the same score and the same schedule because all lectures of one
course are interchangeable (same teacher, same students, same topic).

• Doing the move would break a built-in hard constraint, so the solution would be infeasible but
the score function doesn’t check built-in hard constraints for performance reasons. For
example, don’t change a gym lecture to a room which is not a gym room. It’s usually better to
not use move filtering for such cases, because it allows the metaheuristics to temporarily break
hard constraints to escape local optima.

Any built-in hard constraint must probably be filtered on every move type of
every solver phase. For example if it filters the change move of Local Search, it
must also filter the swap move that swaps the room of a gym lecture with
another lecture for which the other lecture’s original room isn’t a gym room.
Furthermore, it must also filter the change moves of the Construction
Heuristics (which requires an advanced configuration).

If a move is unaccepted by the filter, it’s not executed and the score isn’t calculated.

248

Filtering uses the interface SelectionFilter:

public interface SelectionFilter<Solution_, T> {

 boolean accept(ScoreDirector<Solution_> scoreDirector, T selection);

}

Implement the accept method to return false on a discarded selection (see below). Filtered
selection can happen on any Selector in the selector tree, including any MoveSelector,
EntitySelector or ValueSelector. It works with any cacheType and selectionOrder.

Apply the filter on the lowest level possible. In most cases, you’ll need to know
both the entity and the value involved so you’ll have to apply it on the move
selector.

10.6.4.1. Filtered move selection

Unaccepted moves will not be selected and will therefore never have their doMove() method called:

249

public class DifferentCourseSwapMoveFilter implements SelectionFilter<CourseSchedule,
SwapMove> {

 @Override
 public boolean accept(ScoreDirector<CourseSchedule> scoreDirector, SwapMove move)
{
 Lecture leftLecture = (Lecture) move.getLeftEntity();
 Lecture rightLecture = (Lecture) move.getRightEntity();
 return !leftLecture.getCourse().equals(rightLecture.getCourse());
 }

}

Configure the filterClass on every targeted moveSelector (potentially both in the Local Search and
the Construction Heuristics if it filters ChangeMoves):

 <swapMoveSelector>

<filterClass>org.optaplanner.examples.curriculumcourse.solver.move.DifferentCourseSwap
MoveFilter</filterClass>
 </swapMoveSelector>

You can configure multiple filterClass elements on a single move selector.

10.6.4.2. Filtered entity selection

Unaccepted entities will not be selected and will therefore never be used to create a move.

public class LongLectureSelectionFilter implements SelectionFilter<CourseSchedule,
Lecture> {

 @Override
 public boolean accept(ScoreDirector<CourseSchedule> scoreDirector, Lecture
lecture) {
 return lecture.isLong();
 }

}

Configure the filterClass on every targeted entitySelector (potentially both in the Local Search
and the Construction Heuristics):

250

 <changeMoveSelector>
 <entitySelector>

<filterClass>org.optaplanner.examples.curriculumcourse.solver.move.LongLectureSelectio
nFilter</filterClass>
 </entitySelector>
 </changeMoveSelector>

If that filter should apply on all entities, configure it as a global movableEntitySelectionFilter
instead.

You can configure multiple filterClass elements on a single entity selector.

10.6.4.3. Filtered value selection

Unaccepted values will not be selected and will therefore never be used to create a move.

public class LongPeriodSelectionFilter implements SelectionFilter<CourseSchedule,
Period> {

 @Override
 public boolean accept(ScoreDirector<CourseSchedule> scoreDirector, Period period)
{
 return period();
 }

}

Configure the filterClass on every targeted valueSelector (potentially both in the Local Search and
the Construction Heuristics):

 <changeMoveSelector>
 <valueSelector>

<filterClass>org.optaplanner.examples.curriculumcourse.solver.move.LongPeriodSelection
Filter</filterClass>
 </valueSelector>
 </changeMoveSelector>

You can configure multiple filterClass elements on a single value selector.

10.6.5. Sorted selection

Sorted selection can happen on any Selector in the selector tree, including any MoveSelector,
EntitySelector or ValueSelector. It does not work with cacheType JUST_IN_TIME and it only works
with selectionOrder SORTED.

251

It’s mostly used in construction heuristics.

If the chosen construction heuristic implies sorting, for example
FIRST_FIT_DECREASING implies that the EntitySelector is sorted, there is no need to
explicitly configure a Selector with sorting. If you do explicitly configure the
Selector, it overwrites the default settings of that construction heuristic.

10.6.5.1. Sorted selection by SorterManner

Some Selector types implement a SorterManner out of the box:

• EntitySelector supports:

◦ DECREASING_DIFFICULTY: Sorts the planning entities according to decreasing planning entity
difficulty. Requires that planning entity difficulty is annotated on the domain model.

 <entitySelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>DECREASING_DIFFICULTY</sorterManner>
 </entitySelector>

• ValueSelector supports:

◦ INCREASING_STRENGTH: Sorts the planning values according to increasing planning value
strength. Requires that planning value strength is annotated on the domain model.

 <valueSelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>INCREASING_STRENGTH</sorterManner>
 </valueSelector>

10.6.5.2. Sorted selection by Comparator

An easy way to sort a Selector is with a plain old Comparator:

public class CloudProcessDifficultyComparator implements Comparator<CloudProcess> {

 public int compare(CloudProcess a, CloudProcess b) {
 return new CompareToBuilder()
 .append(a.getRequiredMultiplicand(), b.getRequiredMultiplicand())
 .append(a.getId(), b.getId())
 .toComparison();
 }

}

252

You’ll also need to configure it (unless it’s annotated on the domain model and automatically
applied by the optimization algorithm):

 <entitySelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterComparatorClass>
...CloudProcessDifficultyComparator</sorterComparatorClass>
 <sorterOrder>DESCENDING</sorterOrder>
 </entitySelector>

10.6.5.3. Sorted selection by SelectionSorterWeightFactory

If you need the entire solution to sort a Selector, use a SelectionSorterWeightFactory instead:

public interface SelectionSorterWeightFactory<Solution_, T> {

 Comparable createSorterWeight(Solution_ solution, T selection);

}

253

public class QueenDifficultyWeightFactory implements SelectionSorterWeightFactory
<NQueens, Queen> {

 public QueenDifficultyWeight createSorterWeight(NQueens nQueens, Queen queen) {
 int distanceFromMiddle = calculateDistanceFromMiddle(nQueens.getN(), queen
.getColumnIndex());
 return new QueenDifficultyWeight(queen, distanceFromMiddle);
 }

 ...

 public static class QueenDifficultyWeight implements Comparable
<QueenDifficultyWeight> {

 private final Queen queen;
 private final int distanceFromMiddle;

 public QueenDifficultyWeight(Queen queen, int distanceFromMiddle) {
 this.queen = queen;
 this.distanceFromMiddle = distanceFromMiddle;
 }

 public int compareTo(QueenDifficultyWeight other) {
 return new CompareToBuilder()
 // The more difficult queens have a lower distance to the middle
 .append(other.distanceFromMiddle, distanceFromMiddle) //
Decreasing
 // Tie breaker
 .append(queen.getColumnIndex(), other.queen.getColumnIndex())
 .toComparison();
 }

 }

}

You’ll also need to configure it (unless it’s annotated on the domain model and automatically
applied by the optimization algorithm):

 <entitySelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterWeightFactoryClass>
...QueenDifficultyWeightFactory</sorterWeightFactoryClass>
 <sorterOrder>DESCENDING</sorterOrder>
 </entitySelector>

254

10.6.5.4. Sorted selection by SelectionSorter

Alternatively, you can also use the interface SelectionSorter directly:

public interface SelectionSorter<Solution_, T> {

 void sort(ScoreDirector<Solution_> scoreDirector, List<T> selectionList);

}

 <entitySelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterClass>...MyEntitySorter</sorterClass>
 </entitySelector>

10.6.6. Probabilistic selection

Probabilistic selection can happen on any Selector in the selector tree, including any MoveSelector,
EntitySelector or ValueSelector. It does not work with cacheType JUST_IN_TIME and it only works
with selectionOrder PROBABILISTIC.

255

Each selection has a probabilityWeight, which determines the chance that selection will be selected:

public interface SelectionProbabilityWeightFactory<Solution_, T> {

 double createProbabilityWeight(ScoreDirector<Solution_> scoreDirector, T
selection);

}

 <entitySelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>PROBABILISTIC</selectionOrder>
 <probabilityWeightFactoryClass>
...MyEntityProbabilityWeightFactoryClass</probabilityWeightFactoryClass>
 </entitySelector>

For example, if there are three entities: process A (probabilityWeight 2.0), process B
(probabilityWeight 0.5) and process C (probabilityWeight 0.5), then process A will be selected four
times more than B and C.

10.6.7. Limited selection

Selecting all possible moves sometimes does not scale well enough, especially for construction
heuristics (which don’t support acceptedCountLimit).

To limit the number of selected selection per step, apply a selectedCountLimit on the selector:

 <changeMoveSelector>
 <selectedCountLimit>100</selectedCountLimit>
 </changeMoveSelector>

To scale Local Search, setting acceptedCountLimit is usually better than using
selectedCountLimit.

10.6.8. Mimic selection (record/replay)

During mimic selection, one normal selector records its selection and one or multiple other special
selectors replay that selection. The recording selector acts as a normal selector and supports all
other configuration properties. A replaying selector mimics the recording selection and supports no
other configuration properties.

The recording selector needs an id. A replaying selector must reference a recorder’s id with a
mimicSelectorRef:

256

 <cartesianProductMoveSelector>
 <changeMoveSelector>
 <entitySelector id="entitySelector"/>
 <valueSelector variableName="period"/>
 </changeMoveSelector>
 <changeMoveSelector>
 <entitySelector mimicSelectorRef="entitySelector"/>
 <valueSelector variableName="room"/>
 </changeMoveSelector>
 </cartesianProductMoveSelector>

Mimic selection is useful to create a composite move from two moves that affect the same entity.

10.6.9. Nearby selection

In some use cases (such as TSP and VRP, but also in non-chained variable cases), changing entities
to nearby values or swapping nearby entities can heavily increase scalability and improve
solution quality.

Nearby selection increases the probability of selecting an entity or value which is nearby to the first
entity being moved in that move.

257

The distance between two entities or values is domain specific. Therefore, implement the
NearbyDistanceMeter interface:

public interface NearbyDistanceMeter<O, D> {

 double getNearbyDistance(O origin, D destination);

}

It returns a double which represents the distance:

public class CustomerNearbyDistanceMeter implements NearbyDistanceMeter<Customer,
Standstill> {

 public double getNearbyDistance(Customer origin, Standstill destination) {
 return origin.getDistanceTo(destination);
 }

}

To configure nearby selection, add a nearbySelection element in the entitySelector or valueSelector
and use mimic selection to specify which entity should be near by the selection.

258

 <unionMoveSelector>
 <changeMoveSelector>
 <entitySelector id="entitySelector1"/>
 <valueSelector>
 <nearbySelection>
 <originEntitySelector mimicSelectorRef="entitySelector1"/>
 <nearbyDistanceMeterClass>
...CustomerNearbyDistanceMeter</nearbyDistanceMeterClass>
 <parabolicDistributionSizeMaximum>40</parabolicDistributionSizeMaximum>
 </nearbySelection>
 </valueSelector>
 </changeMoveSelector>
 <swapMoveSelector>
 <entitySelector id="entitySelector2"/>
 <secondaryEntitySelector>
 <nearbySelection>
 <originEntitySelector mimicSelectorRef="entitySelector2"/>
 <nearbyDistanceMeterClass>
...CustomerNearbyDistanceMeter</nearbyDistanceMeterClass>
 <parabolicDistributionSizeMaximum>40</parabolicDistributionSizeMaximum>
 </nearbySelection>
 </secondaryEntitySelector>
 </swapMoveSelector>
 <tailChainSwapMoveSelector>
 <entitySelector id="entitySelector3"/>
 <valueSelector>
 <nearbySelection>
 <originEntitySelector mimicSelectorRef="entitySelector3"/>
 <nearbyDistanceMeterClass>
...CustomerNearbyDistanceMeter</nearbyDistanceMeterClass>
 <parabolicDistributionSizeMaximum>40</parabolicDistributionSizeMaximum>
 </nearbySelection>
 </valueSelector>
 </tailChainSwapMoveSelector>
 </unionMoveSelector>

A distributionSizeMaximum parameter should not be 1 because if the nearest is already the planning
value of the current entity, then the only move that is selectable is not doable.

To allow every element to be selected, regardless of the number of entities, only set the distribution
type (so without a distributionSizeMaximum parameter):

 <nearbySelection>
 <nearbySelectionDistributionType>
PARABOLIC_DISTRIBUTION</nearbySelectionDistributionType>
 </nearbySelection>

The following NearbySelectionDistributionTypes are supported:

259

• BLOCK_DISTRIBUTION: Only the n nearest are selected, with an equal probability. For example,
select the 20 nearest:

 <nearbySelection>
 <blockDistributionSizeMaximum>20</blockDistributionSizeMaximum>
 </nearbySelection>

• LINEAR_DISTRIBUTION: Nearest elements are selected with a higher probability. The probability
decreases linearly.

 <nearbySelection>
 <linearDistributionSizeMaximum>40</linearDistributionSizeMaximum>
 </nearbySelection>

• PARABOLIC_DISTRIBUTION (recommended): Nearest elements are selected with a higher
probability.

 <nearbySelection>
 <parabolicDistributionSizeMaximum>80</parabolicDistributionSizeMaximum>
 </nearbySelection>

• BETA_DISTRIBUTION: Selection according to a beta distribution. Slows down the solver
significantly.

 <nearbySelection>
 <betaDistributionAlpha>1</betaDistributionAlpha>
 <betaDistributionBeta>5</betaDistributionBeta>
 </nearbySelection>

As always, use the Benchmarker to tweak values if desired.

10.7. Custom moves

10.7.1. Which move types might be missing in my implementation?

To determine which move types might be missing in your implementation, run a Benchmarker for
a short amount of time and configure it to write the best solutions to disk. Take a look at such a best
solution: it will likely be a local optima. Try to figure out if there’s a move that could get out of that
local optima faster.

If you find one, implement that coarse-grained move, mix it with the existing moves and
benchmark it against the previous configurations to see if you want to keep it.

260

10.7.2. Custom moves introduction

Instead of using the generic Moves (such as ChangeMove) you can also implement your own Move.
Generic and custom MoveSelectors can be combined as desired.

A custom Move can be tailored to work to the advantage of your constraints. For example in
examination scheduling, changing the period of an exam A would also change the period of all the
other exams that need to coincide with exam A.

A custom Move is far more work to implement and much harder to avoid bugs than a generic Move.
After implementing a custom Move, turn on environmentMode FULL_ASSERT to check for score
corruptions.

10.7.3. The Move interface

All moves implement the Move interface:

public interface Move<Solution_> {

 boolean isMoveDoable(ScoreDirector<Solution_> scoreDirector);

 Move<Solution_> doMove(ScoreDirector<Solution_> scoreDirector);

 ...
}

To implement a custom move, it’s recommended to extend AbstractMove instead implementing Move
directly. OptaPlanner calls AbstractMove.doMove(ScoreDirector), which calls
doMoveOnGenuineVariables(ScoreDirector). For example in cloud balancing, this move changes one
process to another computer:

261

public class CloudComputerChangeMove extends AbstractMove<CloudBalance> {

 private CloudProcess cloudProcess;
 private CloudComputer toCloudComputer;

 public CloudComputerChangeMove(CloudProcess cloudProcess, CloudComputer
toCloudComputer) {
 this.cloudProcess = cloudProcess;
 this.toCloudComputer = toCloudComputer;
 }

 @Override
 protected void doMoveOnGenuineVariables(ScoreDirector<CloudBalance> scoreDirector)
{
 scoreDirector.beforeVariableChanged(cloudProcess, "computer");
 cloudProcess.setComputer(toCloudComputer);
 scoreDirector.afterVariableChanged(cloudProcess, "computer");
 }

 // ...

}

The implementation must notify the ScoreDirector of any changes it makes to planning entity’s
variables: Call the scoreDirector.beforeVariableChanged(Object, String) and
scoreDirector.afterVariableChanged(Object, String) methods directly before and after modifying
an entity’s planning variable.

The example move above is a fine-grained move because it changes only one planning variable. On
the other hand, a coarse-grained move changes multiple entities or multiple planning variables in a
single move, usually to avoid breaking hard constraints by making multiple related changes at
once. For example, a swap move is really just two change moves, but it keeps those two changes
together.

A Move can only change/add/remove planning entities, it must not change any of
the problem facts as that will cause score corruption. Use real-time planning to
change problem facts while solving.

OptaPlanner automatically filters out non doable moves by calling the isMoveDoable(ScoreDirector)
method on each selected move. A non doable move is:

• A move that changes nothing on the current solution. For example, moving process P1 on
computer X to computer X is not doable, because it is already there.

• A move that is impossible to do on the current solution. For example, moving process P1 to
computer Q (when Q isn’t in the list of computers) is not doable because it would assign a
planning value that’s not inside the planning variable’s value range.

In the cloud balancing example, a move which assigns a process to the computer it’s already

262

assigned to is not doable:

 @Override
 public boolean isMoveDoable(ScoreDirector<CloudBalance> scoreDirector) {
 return !Objects.equals(cloudProcess.getComputer(), toCloudComputer);
 }

We don’t need to check if toCloudComputer is in the value range, because we only generate moves for
which that is the case. A move that is currently not doable can become doable when the working
solution changes in a later step, otherwise we probably shouldn’t have created it in the first place.

Each move has an undo move: a move (normally of the same type) which does the exact opposite. In
the cloud balancing example the undo move of P1 {X → Y} is the move P1 {Y → X}. The undo move
of a move is created when the Move is being done on the current solution, before the genuine
variables change:

 @Override
 public CloudComputerChangeMove createUndoMove(ScoreDirector<CloudBalance>
scoreDirector) {
 return new CloudComputerChangeMove(cloudProcess, cloudProcess.getComputer());
 }

Notice that if P1 would have already been moved to Y, the undo move would create the move P1 {Y
→ Y}, instead of the move P1 {Y → X}.

A solver phase might do and undo the same Move more than once. In fact, many solver phases will
iteratively do and undo a number of moves to evaluate them, before selecting one of those and
doing that move again (without undoing it the last time).

Always implement the toString() method to keep OptaPlanner’s logs readable. Keep it non-verbose
and make it consistent with the generic moves:

 public String toString() {
 return cloudProcess + " {" + cloudProcess.getComputer() + " -> " +
toCloudComputer + "}";
 }

Optionally, implement the getSimpleMoveTypeDescription() method to support picked move
statistics:

 @Override
 public String getSimpleMoveTypeDescription() {
 return "CloudComputerChangeMove(CloudProcess.computer)";
 }

263

10.7.3.1. Custom move: rebase()

For multithreaded incremental solving, the custom move must implement the rebase() method:

 @Override
 public CloudComputerChangeMove rebase(ScoreDirector<CloudBalance>
destinationScoreDirector) {
 return new CloudComputerChangeMove(destinationScoreDirector
.lookUpWorkingObject(cloudProcess),
 destinationScoreDirector.lookUpWorkingObject(toCloudComputer));
 }

Rebasing a move takes a move generated of one working solution and creates a new move that does
the same change as the original move, but rewired as if was generated off of the destination
working solution. This allows multithreaded solving to migrate moves from one thread to another.

The lookUpWorkingObject() method translates a planning entity instance or problem fact instance
from one working solution to that of the destination’s working solution. Internally it often uses a
mapping technique based on the planning ID.

To rebase lists or arrays in bulk, use rebaseList() and rebaseArray() on AbstractMove.

10.7.3.2. Custom move: getPlanningEntities() and getPlanningValues()

A custom move should also implement the getPlanningEntities() and getPlanningValues() methods.
Those are used by entity tabu and value tabu respectively. They are called after the Move has already
been done.

 @Override
 public Collection<? extends Object> getPlanningEntities() {
 return Collections.singletonList(cloudProcess);
 }

 @Override
 public Collection<? extends Object> getPlanningValues() {
 return Collections.singletonList(toCloudComputer);
 }

If the Move changes multiple planning entities, such as in a swap move, return all of them in
getPlanningEntities() and return all their values (to which they are changing) in
getPlanningValues().

264

 @Override
 public Collection<? extends Object> getPlanningEntities() {
 return Arrays.asList(leftCloudProcess, rightCloudProcess);
 }

 @Override
 public Collection<? extends Object> getPlanningValues() {
 return Arrays.asList(leftCloudProcess.getComputer(), rightCloudProcess
.getComputer());
 }

10.7.3.3. Custom move: equals() and hashCode()

A Move must implement the equals() and hashCode() methods for move tabu. Two moves which
make the same change on a solution, should be equal ideally.

 @Override
 public boolean equals(Object o) {
 if (this == o) {
 return true;
 } else if (o instanceof CloudComputerChangeMove) {
 CloudComputerChangeMove other = (CloudComputerChangeMove) o;
 return new EqualsBuilder()
 .append(cloudProcess, other.cloudProcess)
 .append(toCloudComputer, other.toCloudComputer)
 .isEquals();
 } else {
 return false;
 }
 }

 @Override
 public int hashCode() {
 return new HashCodeBuilder()
 .append(cloudProcess)
 .append(toCloudComputer)
 .toHashCode();
 }

Notice that it checks if the other move is an instance of the same move type. This instanceof check
is important because a move are compared to a move of another move type. For example a
ChangeMove and SwapMove are compared.

10.7.4. Generating custom moves

Now, let’s generate instances of this custom Move class. There are 2 ways:

265

10.7.4.1. MoveListFactory: the easy way to generate custom moves

The easiest way to generate custom moves is by implementing the interface MoveListFactory:

public interface MoveListFactory<Solution_> {

 List<Move> createMoveList(Solution_ solution);

}

For example:

public class CloudComputerChangeMoveFactory implements MoveListFactory<CloudBalance> {

 @Override
 public List<CloudComputerChangeMove> createMoveList(CloudBalance cloudBalance) {
 List<CloudComputerChangeMove> moveList = new ArrayList<>();
 List<CloudComputer> cloudComputerList = cloudBalance.getComputerList();
 for (CloudProcess cloudProcess : cloudBalance.getProcessList()) {
 for (CloudComputer cloudComputer : cloudComputerList) {
 moveList.add(new CloudComputerChangeMove(cloudProcess, cloudComputer)
);
 }
 }
 return moveList;
 }

}

Simple configuration (which can be nested in a unionMoveSelector just like any other MoveSelector):

 <moveListFactory>

<moveListFactoryClass>org.optaplanner.examples.cloudbalancing.optional.move.CloudCompu
terChangeMoveFactory</moveListFactoryClass>
 </moveListFactory>

Advanced configuration:

266

 <moveListFactory>
 ... <!-- Normal moveSelector properties -->

<moveListFactoryClass>org.optaplanner.examples.cloudbalancing.optional.move.CloudCompu
terChangeMoveFactory</moveListFactoryClass>
 <moveListFactoryCustomProperties>
 ...<!-- Custom properties -->
 </moveListFactoryCustomProperties>
 </moveListFactory>

Because the MoveListFactory generates all moves at once in a List<Move>, it does not support
cacheType JUST_IN_TIME. Therefore, moveListFactory uses cacheType STEP by default and it scales
badly.

To configure values of a MoveListFactory dynamically in the solver configuration (so the
Benchmarker can tweak those parameters), add the moveListFactoryCustomProperties element and
use custom properties.

A custom MoveListFactory implementation must ensure that it does not move
immovable entities.

10.7.4.2. MoveIteratorFactory: generate Custom moves just in time

Use this advanced form to generate custom moves Just In Time by implementing the
MoveIteratorFactory interface:

public interface MoveIteratorFactory<Solution_> {

 long getSize(ScoreDirector<Solution_> scoreDirector);

 Iterator<Move> createOriginalMoveIterator(ScoreDirector<Solution_> scoreDirector);

 Iterator<Move> createRandomMoveIterator(ScoreDirector<Solution_> scoreDirector,
Random workingRandom);

}

The getSize() method must return an estimation of the size. It doesn’t need to be correct, but it’s
better too big than too small. The createOriginalMoveIterator method is called if the selectionOrder
is ORIGINAL or if it is cached. The createRandomMoveIterator method is called for selectionOrder
RANDOM combined with cacheType JUST_IN_TIME.

Don’t create a collection (array, list, set or map) of Moves when creating the
Iterator<Move>: the whole purpose of MoveIteratorFactory over MoveListFactory is
to create a Move just in time in a custom Iterator.next().

Simple configuration (which can be nested in a unionMoveSelector just like any other MoveSelector):

267

 <moveIteratorFactory>
 <moveIteratorFactoryClass>...</moveIteratorFactoryClass>
 </moveIteratorFactory>

Advanced configuration:

 <moveIteratorFactory>
 ... <!-- Normal moveSelector properties -->
 <moveIteratorFactoryClass>...</moveIteratorFactoryClass>
 <moveIteratorFactoryCustomProperties>
 ...<!-- Custom properties -->
 </moveIteratorFactoryCustomProperties>
 </moveIteratorFactory>

To configure values of a MoveIteratorFactory dynamically in the solver configuration (so the
Benchmarker can tweak those parameters), add the moveIteratorFactoryCustomProperties element
and use custom properties.

A custom MoveIteratorFactory implementation must ensure that it does not move
immovable entities.

268

Chapter 11. Exhaustive search

11.1. Overview
Exhaustive Search will always find the global optimum and recognize it too. That being said, it
doesn’t scale (not even beyond toy data sets) and is therefore mostly useless.

11.2. Brute force

11.2.1. Algorithm description

The Brute Force algorithm creates and evaluates every possible solution.

Notice that it creates a search tree that explodes exponentially as the problem size increases, so it
hits a scalability wall.

Brute Force is mostly unusable for a real-world problem due to time
limitations, as shown in scalability of Exhaustive Search.

269

11.2.2. Configuration

Simplest configuration of Brute Force:

<solver>
 ...
 <exhaustiveSearch>
 <exhaustiveSearchType>BRUTE_FORCE</exhaustiveSearchType>
 </exhaustiveSearch>
</solver>

11.3. Branch and bound

11.3.1. Algorithm description

Branch And Bound also explores nodes in an exponential search tree, but it investigates more
promising nodes first and prunes away worthless nodes.

For each node, Branch And Bound calculates the optimistic bound: the best possible score to which
that node can lead to. If the optimistic bound of a node is lower or equal to the global pessimistic
bound, then it prunes away that node (including the entire branch of all its subnodes).

Academic papers use the term lower bound instead of optimistic bound (and the
term upper bound instead of pessimistic bound), because they minimize the score.

OptaPlanner maximizes the score (because it supports combining negative and
positive constraints). Therefore, for clarity, it uses different terms, as it would be
confusing to use the term lower bound for a bound which is always higher.

For example: at index 14, it sets the global pessimistic bound to -2. Because all solutions reachable
from the node visited at index 11 will have a score lower or equal to -2 (the node’s optimistic
bound), they can be pruned away.

270

Notice that Branch And Bound (much like Brute Force) creates a search tree that explodes
exponentially as the problem size increases. So it hits the same scalability wall, only a little bit later.

Branch And Bound is mostly unusable for a real-world problem due to time
limitations, as shown in scalability of Exhaustive Search.

11.3.2. Configuration

Simplest configuration of Branch And Bound:

<solver>
 ...
 <exhaustiveSearch>
 <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
 </exhaustiveSearch>
</solver>

For the pruning to work with the default ScoreBounder, the InitializingScoreTrend
should be set. Especially an InitializingScoreTrend of ONLY_DOWN (or at least has
ONLY_DOWN in the leading score levels) prunes a lot.

Advanced configuration:

271

 <exhaustiveSearch>
 <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
 <nodeExplorationType>DEPTH_FIRST</nodeExplorationType>
 <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
 <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
 </exhaustiveSearch>

The nodeExplorationType options are:

• DEPTH_FIRST (default): Explore deeper nodes first (and then a better score and then a better
optimistic bound). Deeper nodes (especially leaf nodes) often improve the pessimistic bound. A
better pessimistic bound allows pruning more nodes to reduce the search space.

 <exhaustiveSearch>
 <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
 <nodeExplorationType>DEPTH_FIRST</nodeExplorationType>
 </exhaustiveSearch>

• BREADTH_FIRST (not recommended): Explore nodes layer by layer (and then a better score and
then a better optimistic bound). Scales terribly in memory (and usually in performance too).

 <exhaustiveSearch>
 <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
 <nodeExplorationType>BREADTH_FIRST</nodeExplorationType>
 </exhaustiveSearch>

• SCORE_FIRST: Explore nodes with a better score first (and then a better optimistic bound and
then deeper nodes first). Might scale as terribly as BREADTH_FIRST in some cases.

 <exhaustiveSearch>
 <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
 <nodeExplorationType>SCORE_FIRST</nodeExplorationType>
 </exhaustiveSearch>

• OPTIMISTIC_BOUND_FIRST: Explore nodes with a better optimistic bound first (and then a better
score and then deeper nodes first). Might scale as terribly as BREADTH_FIRST in some cases.

 <exhaustiveSearch>
 <exhaustiveSearchType>BRANCH_AND_BOUND</exhaustiveSearchType>
 <nodeExplorationType>OPTIMISTIC_BOUND_FIRST</nodeExplorationType>
 </exhaustiveSearch>

The entitySorterManner options are:

272

• DECREASING_DIFFICULTY: Initialize the more difficult planning entities first. This usually increases
pruning (and therefore improves scalability). Requires the model to support planning entity
difficulty comparison.

• DECREASING_DIFFICULTY_IF_AVAILABLE (default): If the model supports planning entity difficulty
comparison, behave like DECREASING_DIFFICULTY, else like NONE.

• NONE: Initialize the planning entities in original order.

The valueSorterManner options are:

• INCREASING_STRENGTH: Evaluate the planning values in increasing strength. Requires the model to
support planning value strength comparison.

• INCREASING_STRENGTH_IF_AVAILABLE (default): If the model supports planning value strength
comparison, behave like INCREASING_STRENGTH, else like NONE.

• DECREASING_STRENGTH: Evaluate the planning values in decreasing strength. Requires the model to
support planning value strength comparison.

• DECREASING_STRENGTH_IF_AVAILABLE: If the model supports planning value strength comparison,
behave like DECREASING_STRENGTH, else like NONE.

• NONE: Try the planning values in original order.

11.4. Scalability of exhaustive search
Exhaustive Search variants suffer from two big scalability issues:

• They scale terribly memory wise.

• They scale horribly performance wise.

As shown in these time spent graphs from the Benchmarker, Brute Force and Branch And Bound
both hit a performance scalability wall. For example, on N queens it hits wall at a few dozen
queens:

273

In most use cases, such as Cloud Balancing, the wall appears out of thin air:

274

Exhaustive Search hits this wall on small datasets already, so in production these
optimizations algorithms are mostly useless. Use Construction Heuristics with Local Search
instead: those can handle thousands of queens/computers easily.

Throwing hardware at these scalability issues has no noticeable impact. Newer
and more hardware are just a drop in the ocean. Moore’s law cannot win against
the onslaught of a few more planning entities in the dataset.

275

Chapter 12. Construction heuristics

12.1. Overview
A construction heuristic builds a pretty good initial solution in a finite length of time. Its solution
isn’t always feasible, but it finds it fast so metaheuristics can finish the job.

Construction heuristics terminate automatically, so there’s usually no need to configure a
Termination on the construction heuristic phase specifically.

12.2. First fit

12.2.1. Algorithm description

The First Fit algorithm cycles through all the planning entities (in default order), initializing one
planning entity at a time. It assigns the planning entity to the best available planning value, taking
the already initialized planning entities into account. It terminates when all planning entities have
been initialized. It never changes a planning entity after it has been assigned.

Notice that it starts with putting Queen A into row 0 (and never moving it later), which makes it
impossible to reach the optimal solution. Suffixing this construction heuristic with metaheuristics
can remedy that.

276

12.2.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
Entity From Queue.

12.3. First fit decreasing

12.3.1. Algorithm description

Like First Fit, but assigns the more difficult planning entities first, because they are less likely to fit
in the leftovers. So it sorts the planning entities on decreasing difficulty.

277

Requires the model to support planning entity difficulty comparison.

One would expect that this algorithm has better results than First Fit. That’s
usually the case, but not always.

12.3.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

278

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
Entity From Queue.

12.4. Weakest fit

12.4.1. Algorithm description

Like First Fit, but uses the weaker planning values first, because the strong planning values are
more likely to be able to accommodate later planning entities. So it sorts the planning values on
increasing strength.

Requires the model to support planning value strength comparison.

Do not presume that this algorithm has better results than First Fit. That’s often
not the case.

12.4.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>WEAKEST_FIT</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

 <constructionHeuristic>
 <constructionHeuristicType>WEAKEST_FIT</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
Entity From Queue.

12.5. Weakest fit decreasing

12.5.1. Algorithm description

Combines First Fit Decreasing and Weakest Fit. So it sorts the planning entities on decreasing
difficulty and the planning values on increasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.

279

Do not presume that this algorithm has better results than First Fit Decreasing.
That’s often not the case. However, it is usually better than Weakest Fit.

12.5.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>WEAKEST_FIT_DECREASING</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

 <constructionHeuristic>
 <constructionHeuristicType>WEAKEST_FIT_DECREASING</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
Entity From Queue.

12.6. Strongest fit

12.6.1. Algorithm description

Like First Fit, but uses the strong planning values first, because the strong planning values are more
likely to have a lower soft cost to use. So it sorts the planning values on decreasing strength.

Requires the model to support planning value strength comparison.

Do not presume that this algorithm has better results than First Fit or Weakest Fit.
That’s often not the case.

12.6.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>STRONGEST_FIT</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

280

 <constructionHeuristic>
 <constructionHeuristicType>STRONGEST_FIT</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
Entity From Queue.

12.7. Strongest fit decreasing

12.7.1. Algorithm description

Combines First Fit Decreasing and Strongest Fit. So it sorts the planning entities on decreasing
difficulty and the planning values on decreasing strength.

Requires the model to support planning entity difficulty comparison and planning value strength
comparison.

Do not presume that this algorithm has better results than First Fit Decreasing or
Weakest Fit Decreasing. That’s often not the case. However, it is usually better than
Strongest Fit.

12.7.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>STRONGEST_FIT_DECREASING</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

 <constructionHeuristic>
 <constructionHeuristicType>STRONGEST_FIT_DECREASING</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
Entity From Queue.

281

12.8. Allocate entity from queue

12.8.1. Algorithm description

Allocate Entity From Queue is a versatile, generic form of First Fit, First Fit Decreasing, Weakest Fit,
Weakest Fit Decreasing, Strongest Fit and Strongest Fit Decreasing. It works like this:

1. Put all entities in a queue.

2. Assign the first entity (from that queue) to the best value.

3. Repeat until all entities are assigned.

12.8.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>ALLOCATE_ENTITY_FROM_QUEUE</constructionHeuristicType>
 </constructionHeuristic>

Verbose simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>ALLOCATE_ENTITY_FROM_QUEUE</constructionHeuristicType>
 <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
 <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
 </constructionHeuristic>

The entitySorterManner options are:

• DECREASING_DIFFICULTY: Initialize the more difficult planning entities first. This usually increases
pruning (and therefore improves scalability). Requires the model to support planning entity
difficulty comparison.

• DECREASING_DIFFICULTY_IF_AVAILABLE (default): If the model supports planning entity difficulty
comparison, behave like DECREASING_DIFFICULTY, else like NONE.

• NONE: Initialize the planning entities in original order.

The valueSorterManner options are:

• INCREASING_STRENGTH: Evaluate the planning values in increasing strength. Requires the model to
support planning value strength comparison.

• INCREASING_STRENGTH_IF_AVAILABLE (default): If the model supports planning value strength
comparison, behave like INCREASING_STRENGTH, else like NONE.

• DECREASING_STRENGTH: Evaluate the planning values in decreasing strength. Requires the model to
support planning value strength comparison.

282

• DECREASING_STRENGTH_IF_AVAILABLE: If the model supports planning value strength comparison,
behave like DECREASING_STRENGTH, else like NONE.

• NONE: Try the planning values in original order.

Advanced configuration with Weakest Fit Decreasing for a single entity class with one variable:

 <constructionHeuristic>
 <queuedEntityPlacer>
 <entitySelector id="placerEntitySelector">
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>DECREASING_DIFFICULTY</sorterManner>
 </entitySelector>
 <changeMoveSelector>
 <entitySelector mimicSelectorRef="placerEntitySelector"/>
 <valueSelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>INCREASING_STRENGTH</sorterManner>
 </valueSelector>
 </changeMoveSelector>
 </queuedEntityPlacer>
 </constructionHeuristic>

Per step, the QueuedEntityPlacer selects one uninitialized entity from the EntitySelector and applies
the winning Move (out of all the moves for that entity generated by the MoveSelector). The mimic
selection ensures that the winning Move changes only the selected entity.

To customize the entity or value sorting, see sorted selection. For scaling out, see scaling
construction heuristics.

If there are multiple planning variables, there’s one ChangeMoveSelector per planning variable,
which are either in a cartesian product or in sequential steps, similar to the less verbose
configuration.

12.8.3. Multiple entity classes

The easiest way to deal with multiple entity classes is to run a separate Construction Heuristic for
each entity class:

283

 <constructionHeuristic>
 <queuedEntityPlacer>
 <entitySelector id="placerEntitySelector">
 <cacheType>PHASE</cacheType>
 <entityClass>...DogEntity</entityClass>
 </entitySelector>
 <changeMoveSelector>
 <entitySelector mimicSelectorRef="placerEntitySelector"/>
 </changeMoveSelector>
 </queuedEntityPlacer>
 ...
 </constructionHeuristic>
 <constructionHeuristic>
 <queuedEntityPlacer>
 <entitySelector id="placerEntitySelector">
 <cacheType>PHASE</cacheType>
 <entityClass>...CatEntity</entityClass>
 </entitySelector>
 <changeMoveSelector>
 <entitySelector mimicSelectorRef="placerEntitySelector"/>
 </changeMoveSelector>
 </queuedEntityPlacer>
 ...
 </constructionHeuristic>

12.8.4. Pick early type

There are several pick early types for Construction Heuristics:

• NEVER: Evaluate all the selected moves to initialize the variable(s). This is the default if the
InitializingScoreTrend is not ONLY_DOWN.

 <constructionHeuristic>
 ...
 <forager>
 <pickEarlyType>NEVER</pickEarlyType>
 </forager>
 </constructionHeuristic>

• FIRST_NON_DETERIORATING_SCORE: Initialize the variable(s) with the first move that doesn’t
deteriorate the score, ignore the remaining selected moves. This is the default if the
InitializingScoreTrend is ONLY_DOWN.

284

 <constructionHeuristic>
 ...
 <forager>
 <pickEarlyType>FIRST_NON_DETERIORATING_SCORE</pickEarlyType>
 </forager>
 </constructionHeuristic>

If there are only negative constraints, but the InitializingScoreTrend is strictly
not ONLY_DOWN, it can sometimes make sense to apply
FIRST_NON_DETERIORATING_SCORE. Use the Benchmarker to decide if the
score quality loss is worth the time gain.

• FIRST_FEASIBLE_SCORE: Initialize the variable(s) with the first move that has a feasible score.

 <constructionHeuristic>
 ...
 <forager>
 <pickEarlyType>FIRST_FEASIBLE_SCORE</pickEarlyType>
 </forager>
 </constructionHeuristic>

If the InitializingScoreTrend is ONLY_DOWN, use FIRST_FEASIBLE_SCORE_OR_NON_DETERIORATING_HARD
instead, because that’s faster without any disadvantages.

• FIRST_FEASIBLE_SCORE_OR_NON_DETERIORATING_HARD: Initialize the variable(s) with the first move
that doesn’t deteriorate the feasibility of the score any further.

 <constructionHeuristic>
 ...
 <forager>
 <pickEarlyType>FIRST_FEASIBLE_SCORE_OR_NON_DETERIORATING_HARD</pickEarlyType>
 </forager>
 </constructionHeuristic>

12.9. Allocate to value from queue

12.9.1. Algorithm description

Allocate To Value From Queue works like this:

1. Put all values in a round-robin queue.

2. Assign the best entity to the first value (from that queue).

3. Repeat until all entities are assigned.

285

12.9.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>
ALLOCATE_TO_VALUE_FROM_QUEUE</constructionHeuristicType>
 </constructionHeuristic>

Verbose simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>
ALLOCATE_TO_VALUE_FROM_QUEUE</constructionHeuristicType>
 <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
 <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
 </constructionHeuristic>

Advanced configuration for a single entity class with a single variable:

 <constructionHeuristic>
 <queuedValuePlacer>
 <valueSelector id="placerValueSelector">
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>INCREASING_STRENGTH</sorterManner>
 </valueSelector>
 <changeMoveSelector>
 <entitySelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>DECREASING_DIFFICULTY</sorterManner>
 </entitySelector>
 <valueSelector mimicSelectorRef="placerValueSelector"/>
 </changeMoveSelector>
 </queuedValuePlacer>
 </constructionHeuristic>

For scaling out, see scaling construction heuristics.

12.10. Cheapest insertion

12.10.1. Algorithm description

The Cheapest Insertion algorithm cycles through all the planning values for all the planning
entities, initializing one planning entity at a time. It assigns a planning entity to the best available

286

planning value (out of all the planning entities and values), taking the already initialized planning
entities into account. It terminates when all planning entities have been initialized. It never
changes a planning entity after it has been assigned.

 Cheapest Insertion scales considerably worse than First Fit, etc.

12.10.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>CHEAPEST_INSERTION</constructionHeuristicType>
 </constructionHeuristic>

Advanced configuration:

287

 <constructionHeuristic>
 <constructionHeuristicType>CHEAPEST_INSERTION</constructionHeuristicType>
 <...MoveSelector/>
 <...MoveSelector/>
 ...
 </constructionHeuristic>

For scaling out, see scaling construction heuristics. For a very advanced configuration, see Allocate
from pool.

12.11. Regret insertion

12.11.1. Algorithm description

The Regret Insertion algorithm behaves like the Cheapest Insertion algorithm. It also cycles through
all the planning values for all the planning entities, initializing one planning entity at a time. But
instead of picking the entity-value combination with the best score, it picks the entity which has the
largest score loss between its best and second best value assignment. It then assigns that entity to its
best value, to avoid regretting not having done that.

12.11.2. Configuration

This algorithm has not been implemented yet.

12.12. Allocate from pool

12.12.1. Algorithm description

Allocate From Pool is a versatile, generic form of Cheapest Insertion and Regret Insertion. It works
like this:

1. Put all entity-value combinations in a pool.

2. Assign the best entity to best value.

3. Repeat until all entities are assigned.

12.12.2. Configuration

Simple configuration:

 <constructionHeuristic>
 <constructionHeuristicType>ALLOCATE_FROM_POOL</constructionHeuristicType>
 </constructionHeuristic>

Verbose simple configuration:

288

 <constructionHeuristic>
 <constructionHeuristicType>ALLOCATE_FROM_POOL</constructionHeuristicType>
 <entitySorterManner>DECREASING_DIFFICULTY_IF_AVAILABLE</entitySorterManner>
 <valueSorterManner>INCREASING_STRENGTH_IF_AVAILABLE</valueSorterManner>
 </constructionHeuristic>

The entitySorterManner and valueSorterManner options are described in Allocate Entity From Queue.

Advanced configuration with Cheapest Insertion for a single entity class with a single variable:

 <constructionHeuristic>
 <pooledEntityPlacer>
 <changeMoveSelector>
 <entitySelector id="placerEntitySelector">
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>DECREASING_DIFFICULTY</sorterManner>
 </entitySelector>
 <valueSelector>
 <cacheType>PHASE</cacheType>
 <selectionOrder>SORTED</selectionOrder>
 <sorterManner>INCREASING_STRENGTH</sorterManner>
 </valueSelector>
 </changeMoveSelector>
 </pooledEntityPlacer>
 </constructionHeuristic>

Per step, the PooledEntityPlacer applies the winning Move (out of all the moves for that entity
generated by the MoveSelector).

To customize the entity or value sorting, see sorted selection. Other Selector customization (such as
filtering and limiting) is supported too.

For scaling out, see scaling construction heuristics.

12.13. Scaling construction heuristics
If the Construction Heuristic takes a long time to solve and create an initial solution, there is too
little time left for Local Search to reach a near optimal solution.

Ideally, a Construction Heuristic should take less than 20 seconds from scratch and less than 50
milliseconds in real-time planning, so there is plenty of time left for Local Search. If the
Benchmarker proves that this is not the case, there’s a number of improvements that can be done:

12.13.1. InitializingScoreTrend shortcuts

If the InitializingScoreTrend is ONLY_DOWN, a Construction Heuristic algorithm (such as First Fit) is
faster: for an entity, it picks the first move for which the score does not deteriorate the last step

289

score, ignoring all subsequent moves in that step.

It can take that shortcut without reducing solution quality, because a down trend guarantees that
initializing any additional planning variable can only make the score the same or worse. So if a
move has the same score as before the planning variable was initialized, then no other move can
have a better score.

12.13.2. Scaling multiple planning variables in construction heuristics

There are two ways to deal with multiple planning variables, depending on how their ChangeMoves
are combined:

• Cartesian product (default): All variables of the selected entity are assigned together. This
usually results in a better solution quality, but it scales poorly because it tries every
combination of variables. For example:

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
 <cartesianProductMoveSelector>
 <changeMoveSelector>
 <valueSelector variableName="period"/>
 </changeMoveSelector>
 <changeMoveSelector>
 <valueSelector variableName="room"/>
 </changeMoveSelector>
 </cartesianProductMoveSelector>
 </constructionHeuristic>

• Sequential: One variable is assigned at a time. Scales better, at the cost of solution quality. The
order of the planning variables matters. For example:

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
 <changeMoveSelector>
 <valueSelector variableName="period"/>
 </changeMoveSelector>
 <changeMoveSelector>
 <valueSelector variableName="room"/>
 </changeMoveSelector>
 </constructionHeuristic>

The second way scales better, so it can be worth to switch to it. For example, in a course scheduling
example with 200 rooms and 40 periods, a cartesian product selects 8 000 moves per entity (1 step
per entity). On the other hand, a sequential approach only selects 240 moves per entity (2 steps per
entity), ending the Construction Heuristic 3 times faster. Especially for three or more planning
variables, the scaling difference is huge. For example, with three variables of 1 000 values each, a
cartesian product selects 1 000 000 000 moves per entity (1 step per entity). A sequential approach

290

only selects 3 000 moves per entity (3 steps per entity), ending the Construction Heuristic 300 000
times faster.

The order of the variables is important, especially in the sequential technique. In
the sequential example above, it’s better to select the period first and the room
second (instead of the other way around), because there are more hard constraints
that do not involve the room, such as no teacher should teach two lectures at the
same time.

Let the Benchmarker guide you.

With three or more variables, it’s possible to combine the cartesian product and sequential
techniques:

291

 <constructionHeuristic>
 <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
 <cartesianProductMoveSelector>
 <changeMoveSelector>
 <valueSelector variableName="period"/>
 </changeMoveSelector>
 <changeMoveSelector>
 <valueSelector variableName="room"/>
 </changeMoveSelector>
 </cartesianProductMoveSelector>
 <changeMoveSelector>
 <valueSelector variableName="teacher"/>
 </changeMoveSelector>
 </constructionHeuristic>

12.13.3. Other scaling techniques in construction heuristics

Partitioned Search reduces the number of moves per step. On top of that, it runs the Construction
Heuristic on the partitions in parallel. It is supported to only partition the Construction Heuristic
phase.

Other Selector customizations can also reduce the number of moves generated by step:

• Filtered selection

• Limited selection

292

Chapter 13. Local search

13.1. Overview
Local Search starts from an initial solution and evolves that single solution into a mostly better and
better solution. It uses a single search path of solutions, not a search tree. At each solution in this
path it evaluates a number of moves on the solution and applies the most suitable move to take the
step to the next solution. It does that for a high number of iterations until it’s terminated (usually
because its time has run out).

Local Search acts a lot like a human planner: it uses a single search path and moves facts around to
find a good feasible solution. Therefore it’s pretty natural to implement.

Local Search needs to start from an initialized solution, therefore it’s usually required to
configure a Construction Heuristic phase before it.

13.2. Local search concepts

13.2.1. Step by step

A step is the winning Move. Local Search tries a number of moves on the current solution and picks
the best accepted move as the step:

Figure 6. Decide the next step at step 0 (four queens example)

Because the move B0 to B3 has the highest score (-3), it is picked as the next step. If multiple moves
have the same highest score, one is picked randomly, in this case B0 to B3. Note that C0 to C3 (not
shown) could also have been picked because it also has the score -3.

The step is applied on the solution. From that new solution, Local Search tries every move again, to
decide the next step after that. It continually does this in a loop, and we get something like this:

293

Figure 7. All steps (four queens example)

Notice that Local Search doesn’t use a search tree, but a search path. The search path is highlighted
by the green arrows. At each step it tries all selected moves, but unless it’s the step, it doesn’t
investigate that solution further. This is one of the reasons why Local Search is very scalable.

As shown above, Local Search solves the four queens problem by starting with the starting solution
and make the following steps sequentially:

1. B0 to B3

2. D0 to B2

3. A0 to B1

294

Turn on debug logging for the category org.optaplanner to show those steps in the log:

INFO Solving started: time spent (0), best score (-6), environment mode
(REPRODUCIBLE), random (JDK with seed 0).
DEBUG LS step (0), time spent (20), score (-3), new best score (-3),
accepted/selected move count (12/12), picked move (Queen-1 {Row-0 -> Row-3}).
DEBUG LS step (1), time spent (31), score (-1), new best score (-1),
accepted/selected move count (12/12), picked move (Queen-3 {Row-0 -> Row-2}).
DEBUG LS step (2), time spent (40), score (0), new best score (0),
accepted/selected move count (12/12), picked move (Queen-0 {Row-0 -> Row-1}).
INFO Local Search phase (0) ended: time spent (41), best score (0), score calculation
speed (5000/sec), step total (3).
INFO Solving ended: time spent (41), best score (0), score calculation speed
(5000/sec), phase total (1), environment mode (REPRODUCIBLE).

Notice that a log message includes the toString() method of the Move implementation which returns
for example "Queen-1 {Row-0 → Row-3}".

A naive Local Search configuration solves the four queens problem in three steps, by evaluating
only 37 possible solutions (three steps with 12 moves each + one starting solution), which is only a
fraction of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions. By using a Construction Heuristics phase first, it’s even a
lot more efficient.

13.2.2. Decide the next step

Local Search decides the next step with the aid of three configurable components:

• A MoveSelector which selects the possible moves of the current solution. See the chapter move
and neighborhood selection.

• An Acceptor which filters out unacceptable moves.

• A Forager which gathers accepted moves and picks the next step from them.

The solver phase configuration looks like this:

 <localSearch>
 <unionMoveSelector>
 ...
 </unionMoveSelector>
 <acceptor>
 ...
 </acceptor>
 <forager>
 ...
 </forager>
 </localSearch>

295

In the example below, the MoveSelector generated the moves shown with the blue lines, the Acceptor
accepted all of them and the Forager picked the move B0 to B3.

Turn on trace logging to show the decision making in the log:

INFO Solver started: time spent (0), score (-6), new best score (-6), random (JDK
with seed 0).
TRACE Move index (0) not doable, ignoring move (Queen-0 {Row-0 -> Row-0}).
TRACE Move index (1), score (-4), accepted (true), move (Queen-0 {Row-0 ->
Row-1}).
TRACE Move index (2), score (-4), accepted (true), move (Queen-0 {Row-0 ->
Row-2}).
TRACE Move index (3), score (-4), accepted (true), move (Queen-0 {Row-0 ->
Row-3}).
...
TRACE Move index (6), score (-3), accepted (true), move (Queen-1 {Row-0 ->
Row-3}).
...
TRACE Move index (9), score (-3), accepted (true), move (Queen-2 {Row-0 ->
Row-3}).
...
TRACE Move index (12), score (-4), accepted (true), move (Queen-3 {Row-0 ->
Row-3}).
DEBUG LS step (0), time spent (6), score (-3), new best score (-3),
accepted/selected move count (12/12), picked move (Queen-1 {Row-0 -> Row-3}).
...

Because the last solution can degrade (for example in Tabu Search), the Solver remembers the best
solution it has encountered through the entire search path. Each time the current solution is better
than the last best solution, the current solution is cloned and referenced as the new best solution.

296

13.2.3. Acceptor

An Acceptor is used (together with a Forager) to active Tabu Search, Simulated Annealing, Late
Acceptance, … For each move it checks whether it is accepted or not.

By changing a few lines of configuration, you can easily switch from Tabu Search to Simulated
Annealing or Late Acceptance and back.

You can implement your own Acceptor, but the built-in acceptors should suffice for most needs. You
can also combine multiple acceptors.

13.2.4. Forager

A Forager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one is
picked randomly to break the tie. Breaking ties randomly leads to better results.

297

It is possible to disable breaking ties randomly by explicitly setting
breakTieRandomly to false, but that’s almost never a good idea:

• If an earlier move is better than a later move with the same score, the score
calculator should add an extra softer score level to score the first move as
slightly better. Don’t rely on move selection order to enforce that.

• Random tie breaking does not affect reproducibility.

13.2.4.1. Accepted count limit

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

• An acceptedCountLimit integer, which specifies how many accepted moves should be evaluated
during each step. By default, all accepted moves are evaluated at every step.

 <forager>
 <acceptedCountLimit>1000</acceptedCountLimit>
 </forager>

Unlike the n queens problem, real world problems require the use of acceptedCountLimit. Start from
an acceptedCountLimit that takes a step in less than two seconds. Turn on INFO logging to see the
step times. Use the Benchmarker to tweak the value.

With a low acceptedCountLimit (so a fast stepping algorithm), it is recommended to
avoid using selectionOrder SHUFFLED because the shuffling generates a random
number for every element in the selector, taking up a lot of time, but only a few
elements are actually selected.

13.2.4.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are three
pick early types for Local Search:

• NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

 <forager>
 <pickEarlyType>NEVER</pickEarlyType>
 </forager>

• FIRST_BEST_SCORE_IMPROVING: Pick the first accepted move that improves the best score. If none
improve the best score, it behaves exactly like the pickEarlyType NEVER.

298

 <forager>
 <pickEarlyType>FIRST_BEST_SCORE_IMPROVING</pickEarlyType>
 </forager>

• FIRST_LAST_STEP_SCORE_IMPROVING: Pick the first accepted move that improves the last step score.
If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

 <forager>
 <pickEarlyType>FIRST_LAST_STEP_SCORE_IMPROVING</pickEarlyType>
 </forager>

13.3. Hill climbing (simple local search)

13.3.1. Algorithm description

Hill Climbing tries all selected moves and then takes the best move, which is the move which leads
to the solution with the highest score. That best move is called the step move. From that new
solution, it again tries all selected moves and takes the best move and continues like that iteratively.
If multiple selected moves tie for the best move, one of them is randomly chosen as the best move.

Notice that once a queen has moved, it can be moved again later. This is a good thing, because in an

299

NP-complete problem it’s impossible to predict what will be the optimal final value for a planning
variable.

13.3.2. Stuck in local optima

Hill climbing always takes improving moves. This may seem like a good thing, but it’s not: Hill
Climbing can easily get stuck in a local optimum. This happens when it reaches a solution for
which all the moves deteriorate the score. Even if it picks one of those moves, the next step might
go back to the original solution and which case chasing its own tail:

Improvements upon Hill Climbing (such as Tabu Search, Simulated Annealing and Late Acceptance)
address the problem of being stuck in local optima. Therefore, it’s recommended to never use Hill
Climbing, unless you’re absolutely sure there are no local optima in your planning problem.

13.3.3. Configuration

Simplest configuration:

 <localSearch>
 <localSearchType>HILL_CLIMBING</localSearchType>
 </localSearch>

Advanced configuration:

300

 <localSearch>
 ...
 <acceptor>
 <acceptorType>HILL_CLIMBING</acceptorType>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

13.4. Tabu search

13.4.1. Algorithm description

Tabu Search is a Local Search that maintains a tabu list to avoid getting stuck in local optima. The
tabu list holds recently used objects that are taboo to use for now. Moves that involve an object in
the tabu list, are not accepted. The tabu list objects can be anything related to the move, such as the
planning entity, planning value, move, solution, … Here’s an example with entity tabu for four
queens, so the queens are put in the tabu list:

 It’s called Tabu Search, not Taboo Search. There is no spelling error.

301

Scientific paper: Tabu Search - Part 1 and Part 2 by Fred Glover (1989 - 1990)

13.4.2. Configuration

Simplest configuration:

 <localSearch>
 <localSearchType>TABU_SEARCH</localSearchType>
 </localSearch>

When Tabu Search takes steps it creates one or more tabus. For a number of steps, it does not
accept a move if that move breaks tabu. That number of steps is the tabu size. Advanced
configuration:

 <localSearch>
 ...
 <acceptor>
 <entityTabuSize>7</entityTabuSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>1000</acceptedCountLimit>
 </forager>
 </localSearch>

A Tabu Search acceptor should be combined with a high acceptedCountLimit, such
as 1000.

OptaPlanner implements several tabu types:

• Planning entity tabu (recommended) makes the planning entities of recent steps tabu. For
example, for N queens it makes the recently moved queens tabu. It’s recommended to start with
this tabu type.

 <acceptor>
 <entityTabuSize>7</entityTabuSize>
 </acceptor>

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of entities, for
example 2%:

 <acceptor>
 <entityTabuRatio>0.02</entityTabuRatio>
 </acceptor>

• Planning value tabu makes the planning values of recent steps tabu. For example, for N queens

302

it makes the recently moved to rows tabu.

 <acceptor>
 <valueTabuSize>7</valueTabuSize>
 </acceptor>

To avoid hard coding the tabu size, configure a tabu ratio, relative to the number of values, for
example 2%:

 <acceptor>
 <valueTabuRatio>0.02</valueTabuRatio>
 </acceptor>

• Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

 <acceptor>
 <moveTabuSize>7</moveTabuSize>
 </acceptor>

• Undo move tabu makes the undo move of recent steps tabu.

 <acceptor>
 <undoMoveTabuSize>7</undoMoveTabuSize>
 </acceptor>

When using move tabu and undo move tabu with custom moves, make sure that
the planning entities do not include planning variables in their hashCode methods.
Failure to do so results in runtime exceptions being thrown due to the hashCode not
being constant, as the entities have their values changed by the local search
algorithm.

Sometimes it’s useful to combine tabu types:

 <acceptor>
 <entityTabuSize>7</entityTabuSize>
 <valueTabuSize>3</valueTabuSize>
 </acceptor>

If the tabu size is too small, the solver can still get stuck in a local optimum. On the other hand, if
the tabu size is too large, the solver can be inefficient by bouncing off the walls. Use the
Benchmarker to fine tweak your configuration.

303

13.5. Simulated annealing

13.5.1. Algorithm description

Simulated Annealing evaluates only a few moves per step, so it steps quickly. In the classic
implementation, the first accepted move is the winning step. A move is accepted if it doesn’t
decrease the score or - in case it does decrease the score - it passes a random check. The chance that
a decreasing move passes the random check decreases relative to the size of the score decrement
and the time the phase has been running (which is represented as the temperature).

Simulated Annealing does not always pick the move with the highest score, neither does it evaluate
many moves per step. At least at first. Instead, it gives non improving moves also a chance to be
picked, depending on its score and the time gradient of the Termination. In the end, it gradually
turns into Hill Climbing, only accepting improving moves.

13.5.2. Configuration

Start with a simulatedAnnealingStartingTemperature set to the maximum score delta a single move
can cause. Use the Benchmarker to tweak the value. Advanced configuration:

304

 <localSearch>
 ...
 <acceptor>
 <simulatedAnnealingStartingTemperature>
2hard/100soft</simulatedAnnealingStartingTemperature>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

Simulated Annealing should use a low acceptedCountLimit. The classic algorithm uses an
acceptedCountLimit of 1, but often 4 performs better.

Simulated Annealing can be combined with a tabu acceptor at the same time. That gives Simulated
Annealing salted with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search configuration.

 <localSearch>
 ...
 <acceptor>
 <simulatedAnnealingStartingTemperature>
2hard/100soft</simulatedAnnealingStartingTemperature>
 <entityTabuSize>5</entityTabuSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

13.6. Late acceptance

13.6.1. Algorithm description

Late Acceptance (also known as Late Acceptance Hill Climbing) also evaluates only a few moves per
step. A move is accepted if it does not decrease the score, or if it leads to a score that is at least the
late score (which is the winning score of a fixed number of steps ago).

305

Scientific paper: The Late Acceptance Hill-Climbing Heuristic by Edmund K. Burke, Yuri Bykov
(2012)

13.6.2. Configuration

Simplest configuration:

 <localSearch>
 <localSearchType>LATE_ACCEPTANCE</localSearchType>
 </localSearch>

Late Acceptance accepts any move that has a score which is higher than the best score of a number
of steps ago. That number of steps is the lateAcceptanceSize. Advanced configuration:

306

http://www.cs.stir.ac.uk/~kjt/techreps/pdf/TR192.pdf
http://www.cs.stir.ac.uk/~kjt/techreps/pdf/TR192.pdf

 <localSearch>
 ...
 <acceptor>
 <lateAcceptanceSize>400</lateAcceptanceSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

Late Acceptance should use a low acceptedCountLimit.

Late Acceptance can be combined with a tabu acceptor at the same time. That gives Late
Acceptance salted with a bit of Tabu. Use a lower tabu size than in a pure Tabu Search
configuration.

 <localSearch>
 ...
 <acceptor>
 <lateAcceptanceSize>400</lateAcceptanceSize>
 <entityTabuSize>5</entityTabuSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

13.7. Great Deluge

13.7.1. Algorithm Description

Great Deluge algorithm is similar to the Simulated Annealing algorithm, it evaluates only a few
moves per steps, so it steps quickly. The first accepted move is the winning step. A move is accepted
only if it is not lower than the score value (water level) that we are working with. It means Great
Deluge is deterministic and opposite of Simulated Annealing has no randomization in it. The water
level is increased after every step either about the fixed value or by percentual value. A gradual
increase in water level gives Great Deluge more time to escape from local maxima.

13.7.2. Configuration

Simplest configuration:

 <localSearch>
 <localSearchType>GREAT_DELUGE</localSearchType>
 </localSearch>

307

Great Deluge takes as starting water level best score from construction heuristic and uses default
rain speed ratio. Advanced configuration:

 <localSearch>
 ...
 <acceptor>
 <greatDelugeInitialWaterLevel>20hard/100soft</greatDelugeInitialWaterLevel>
 <greatDelugeWaterLevelIncrementRatio>
0.00000005</greatDelugeWaterLevelIncrementRatio>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

OptaPlanner implements two water level increment options:

If greatDelugeWaterLevelIncrementScore is set, the water level is increased by a constant value.

<acceptor>
 <greatDelugeWaterLevelIncrementScore>10</greatDelugeWaterLevelIncrementScore>
</acceptor>

To avoid hard coding the water level increment, configure a greatDelugeWaterLevelIncrementRatio
(recommended) when the water level is increased by percentual value, so there is no need to know
the size of the problem or value of a scoring function.

<acceptor>
 <greatDelugeWaterLevelIncrementRatio>
0.00000005</greatDelugeWaterLevelIncrementRatio>
</acceptor>

Also greatDelugeInitialWaterLevel can be set as a starting water level but is recommended not to do
it, so the algorithm takes as starting value the best score from the construction heuristic. Use the
Benchmarker to fine-tune tweak your configuration.

13.8. Step counting hill climbing

13.8.1. Algorithm description

Step Counting Hill Climbing also evaluates only a few moves per step. For a number of steps, it
keeps the step score as a threshold. A move is accepted if it does not decrease the score, or if it leads
to a score that is at least the threshold score.

Scientific paper: An initial study of a novel Step Counting Hill Climbing heuristic applied to
timetabling problems by Yuri Bykov, Sanja Petrovic (2013)

308

https://www.researchgate.net/profile/Sanja_Petrovic2/publication/299593956_A_Step_Counting_Hill_Climbing_Algorithm_applied_to_University_Examination_Timetabling/links/5729d02a08aef7c7e2c4103a/A-Step-Counting-Hill-Climbing-Algorithm-applied-to-University-Examination-Timetabling.pdf
https://www.researchgate.net/profile/Sanja_Petrovic2/publication/299593956_A_Step_Counting_Hill_Climbing_Algorithm_applied_to_University_Examination_Timetabling/links/5729d02a08aef7c7e2c4103a/A-Step-Counting-Hill-Climbing-Algorithm-applied-to-University-Examination-Timetabling.pdf

13.8.2. Configuration

Step Counting Hill Climbing accepts any move that has a score which is higher than a threshold
score. Every number of steps (specified by stepCountingHillClimbingSize), the threshold score is set
to the step score.

 <localSearch>
 ...
 <acceptor>
 <stepCountingHillClimbingSize>400</stepCountingHillClimbingSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>1</acceptedCountLimit>
 </forager>
 </localSearch>

Step Counting Hill Climbing should use a low acceptedCountLimit.

Step Counting Hill Climbing can be combined with a tabu acceptor at the same time, similar as
shown in the Late Acceptance section.

13.9. Strategic oscillation

13.9.1. Algorithm description

Strategic Oscillation is an add-on, which works especially well with Tabu Search. Instead of picking
the accepted move with the highest score, it employs a different mechanism: If there’s an
improving move, it picks it. If there’s no improving move however, it prefers moves which improve
a softer score level, over moves which break a harder score level less.

13.9.2. Configuration

Configure a finalistPodiumType, for example in a Tabu Search configuration:

 <localSearch>
 ...
 <acceptor>
 <entityTabuSize>7</entityTabuSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>1000</acceptedCountLimit>
 <finalistPodiumType>STRATEGIC_OSCILLATION</finalistPodiumType>
 </forager>
 </localSearch>

The following finalistPodiumTypes are supported:

309

• HIGHEST_SCORE (default): Pick the accepted move with the highest score.

• STRATEGIC_OSCILLATION: Alias for the default strategic oscillation variant.

• STRATEGIC_OSCILLATION_BY_LEVEL: If there is an accepted improving move, pick it. If no such move
exists, prefer an accepted move which improves a softer score level over one that doesn’t (even
if it has a better harder score level). A move is improving if it’s better than the last completed
step score.

• STRATEGIC_OSCILLATION_BY_LEVEL_ON_BEST_SCORE: Like STRATEGIC_OSCILLATION_BY_LEVEL, but define
improving as better than the best score (instead of the last completed step score).

13.10. Variable neighborhood descent

13.10.1. Algorithm description

Variable Neighborhood Descent iteratively tries multiple move selectors in original order (depleting
each selector entirely before trying the next one), picking the first improving move (which also
resets the iterator back to the first move selector).

Despite that VND has a name that ends with descent (from the research papers),
the implementation will ascend to a higher score (which is a better score).

13.10.2. Configuration

Simplest configuration:

 <localSearch>
 <localSearchType>VARIABLE_NEIGHBORHOOD_DESCENT</localSearchType>
 </localSearch>

Advanced configuration:

 <localSearch>
 <unionMoveSelector>
 <selectionOrder>ORIGINAL</selectionOrder>
 <changeMoveSelector/>
 <swapMoveSelector/>
 ...
 </unionMoveSelector>
 <acceptor>
 <acceptorType>HILL_CLIMBING</acceptorType>
 </acceptor>
 <forager>
 <pickEarlyType>FIRST_LAST_STEP_SCORE_IMPROVING</pickEarlyType>
 </forager>
 </localSearch>

310

Variable Neighborhood Descent doesn’t scale well, but it is useful in some use cases with a very
erratic score landscape.

13.11. Using a custom Termination, MoveSelector,
EntitySelector, ValueSelector, or Acceptor
Plug in a custom Termination, MoveSelector, EntitySelector, ValueSelector or Acceptor by extending
the abstract class and also the related *Config class.

Extending Config classes is not covered by the backwards compatibility guarantee.
Whenever possible, it’s better to just use custom properties instead.

For example, to use a custom Termination, extend the AbstractTermination class, extend the
TerminationConfig class and configure it in the solver configuration.

<solver>
 <termination class="...MyTerminationConfig">
 <myProperty>myValue</myProperty>
 </termination>
</solver>

It’s not possible to inject a Termination, … instance directly (to avoid extending a
Config class too) because:

• A SolverFactory can build multiple Solver instances, which each require a
distinct Termination, … instance.

• A solver configuration needs to be serializable from and to XML. This makes
benchmarking with PlannerBenchmark particularly easy because you can
configure different Solver variants in XML.

• A Config class is often easier and clearer to configure. For example:
TerminationConfig translates minutesSpentLimit and secondsSpentLimit into
timeMillisSpentLimit.

If you write a custom implementation of any of those classes, let us know why on our forum. If it’s
not domain specific, you might want to consider contributing it back as a pull request on github:
we’ll optimize it and take it along in future refactorings.

311

https://groups.google.com/forum/#!forum/optaplanner-dev

Chapter 14. Evolutionary algorithms

14.1. Overview
Evolutionary Algorithms work on a population of solutions and evolve that population.

14.2. Evolutionary strategies
This algorithm has not been implemented yet.

14.3. Genetic algorithms
This algorithm has not been implemented yet.

A good Genetic Algorithms prototype in OptaPlanner was written some time ago,
but it wasn’t practical to merge and support it at the time. The results of Genetic
Algorithms were consistently and seriously inferior to all the Local Search variants
(except Hill Climbing) on all use cases tried. Nevertheless, a future version of
OptaPlanner will add support for Genetic Algorithms, so you can easily benchmark
Genetic Algorithms on your use case too.

312

Chapter 15. Hyperheuristics

15.1. Overview
A hyperheuristic automates the decision which heuristic(s) to use on a specific data set.

A future version of OptaPlanner will have native support for hyperheuristics. Meanwhile, it’s
possible to implement it yourself: Based on the size or difficulty of a data set (which is a criterion),
use a different Solver configuration (or adjust the default configuration using the Solver
configuration API). The Benchmarker can help to identify such criteria.

313

Chapter 16. Partitioned search

16.1. Algorithm description
It is often more efficient to partition large data sets (usually above 5000 planning entities) into
smaller pieces and solve them separately. Partition Search is multithreaded, so it provides a
performance boost on multi-core machines due to higher CPU utilization. Additionally, even when
only using one CPU, it finds an initial solution faster, because the search space sum of a partitioned
Construction Heuristic is far less than its non-partitioned variant.

However, partitioning does lead to suboptimal results, even if the pieces are solved optimally, as
shown below:

It effectively trades a short term gain in solution quality for long term loss. One way to compensate
for this loss, is to run a non-partitioned Local Search after the Partitioned Search phase.

Not all use cases can be partitioned. Partitioning only works for use cases where
the planning entities and value ranges can be split into n partitions, without any of
the constraints crossing boundaries between partitions.

314

16.2. Configuration
Simplest configuration:

 <partitionedSearch>

<solutionPartitionerClass>org.optaplanner.examples.cloudbalancing.optional.partitioner
.CloudBalancePartitioner</solutionPartitionerClass>
 </partitionedSearch>

Also add a @PlanningId annotations on every planning entity class and planning value class. There
are several ways to partition a solution.

Advanced configuration:

 <partitionedSearch>
 ...

<solutionPartitionerClass>org.optaplanner.examples.cloudbalancing.optional.partitioner
.CloudBalancePartitioner</solutionPartitionerClass>
 <runnablePartThreadLimit>4</runnablePartThreadLimit>

 <constructionHeuristic>...</constructionHeuristic>
 <localSearch>...</localSearch>
 </partitionedSearch>

The runnablePartThreadLimit allows limiting CPU usage to avoid hanging your machine, see below.

To run in an environment that doesn’t like arbitrary thread creation, plug in a custom thread
factory.

A logging level of debug or trace causes congestion in multithreaded Partitioned
Search and slows down the score calculation speed.

Just like a <solver> element, the <partitionedSearch> element can contain one or more phases. Each
of those phases will be run on each partition.

A common configuration is to first run a Partitioned Search phase (which includes a Construction
Heuristic and a Local Search) followed by a non-partitioned Local Search phase:

315

 <partitionedSearch>
 <solutionPartitionerClass>...CloudBalancePartitioner</solutionPartitionerClass>

 <constructionHeuristic/>
 <localSearch>
 <termination>
 <secondsSpentLimit>60</secondsSpentLimit>
 </termination>
 </localSearch>
 </partitionedSearch>
 <localSearch/>

16.3. Partitioning a solution

16.3.1. Custom SolutionPartitioner

To use a custom SolutionPartitioner, configure one on the Partitioned Search phase:

 <partitionedSearch>

<solutionPartitionerClass>org.optaplanner.examples.cloudbalancing.optional.partitioner
.CloudBalancePartitioner</solutionPartitionerClass>
 </partitionedSearch>

Implement the SolutionPartitioner interface:

public interface SolutionPartitioner<Solution_> {

 List<Solution_> splitWorkingSolution(ScoreDirector<Solution_> scoreDirector,
Integer runnablePartThreadLimit);

}

The size() of the returned List is the partCount (the number of partitions). This can be decided
dynamically, for example, based on the size of the non-partitioned solution. The partCount is
unrelated to the runnablePartThreadLimit.

For example:

public class CloudBalancePartitioner implements SolutionPartitioner<CloudBalance> {

 private int partCount = 4;
 private int minimumProcessListSize = 75;

 @Override
 public List<CloudBalance> splitWorkingSolution(ScoreDirector<CloudBalance>

316

scoreDirector, Integer runnablePartThreadLimit) {
 CloudBalance originalSolution = scoreDirector.getWorkingSolution();
 List<CloudComputer> originalComputerList = originalSolution.getComputerList();
 List<CloudProcess> originalProcessList = originalSolution.getProcessList();
 int partCount = this.partCount;
 if (originalProcessList.size() / partCount < minimumProcessListSize) {
 partCount = originalProcessList.size() / minimumProcessListSize;
 }
 List<CloudBalance> partList = new ArrayList<>(partCount);
 for (int i = 0; i < partCount; i++) {
 CloudBalance partSolution = new CloudBalance(originalSolution.getId(),
 new ArrayList<>(originalComputerList.size() / partCount + 1),
 new ArrayList<>(originalProcessList.size() / partCount + 1));
 partList.add(partSolution);
 }

 int partIndex = 0;
 Map<Long, Pair<Integer, CloudComputer>> idToPartIndexAndComputerMap = new
HashMap<>(originalComputerList.size());
 for (CloudComputer originalComputer : originalComputerList) {
 CloudBalance part = partList.get(partIndex);
 CloudComputer computer = new CloudComputer(
 originalComputer.getId(),
 originalComputer.getCpuPower(), originalComputer.getMemory(),
 originalComputer.getNetworkBandwidth(), originalComputer.getCost(
));
 part.getComputerList().add(computer);
 idToPartIndexAndComputerMap.put(computer.getId(), Pair.of(partIndex,
computer));
 partIndex = (partIndex + 1) % partList.size();
 }

 partIndex = 0;
 for (CloudProcess originalProcess : originalProcessList) {
 CloudBalance part = partList.get(partIndex);
 CloudProcess process = new CloudProcess(
 originalProcess.getId(),
 originalProcess.getRequiredCpuPower(), originalProcess
.getRequiredMemory(),
 originalProcess.getRequiredNetworkBandwidth());
 part.getProcessList().add(process);
 if (originalProcess.getComputer() != null) {
 Pair<Integer, CloudComputer> partIndexAndComputer =
idToPartIndexAndComputerMap.get(
 originalProcess.getComputer().getId());
 if (partIndexAndComputer == null) {
 throw new IllegalStateException("The initialized process (" +
originalProcess
 + ") has a computer (" + originalProcess.getComputer()
 + ") which doesn't exist in the originalSolution (" +
originalSolution + ").");

317

 }
 if (partIndex != partIndexAndComputer.getLeft().intValue()) {
 throw new IllegalStateException("The initialized process (" +
originalProcess
 + ") with partIndex (" + partIndex
 + ") has a computer (" + originalProcess.getComputer()
 + ") which belongs to another partIndex (" +
partIndexAndComputer.getLeft() + ").");
 }
 process.setComputer(partIndexAndComputer.getRight());
 }
 partIndex = (partIndex + 1) % partList.size();
 }
 return partList;
 }

}

To configure values of a SolutionPartitioner dynamically in the solver configuration (so the
Benchmarker can tweak those parameters), add the solutionPartitionerCustomProperties element
and use custom properties:

 <partitionedSearch>
 <solutionPartitionerClass>...CloudBalancePartitioner</solutionPartitionerClass>
 <solutionPartitionerCustomProperties>
 <myPartCount>8</myPartCount>
 <myMinimumProcessListSize>100</myMinimumProcessListSize>
 </solutionPartitionerCustomProperties>
 </partitionedSearch>

16.4. Runnable part thread limit
When running a multithreaded solver, such as Partitioned Search, CPU power can quickly become
a scarce resource, which can cause other processes or threads to hang or freeze. However,
OptaPlanner has a system to prevent CPU starving of other processes (such as an SSH connection in
production or your IDE in development) or other threads (such as the servlet threads that handle
REST requests).

As explained in sizing hardware and software, each solver (including each child solver) does no IO
during solve() and therefore saturates one CPU core completely. In Partitioned Search, every
partition always has its own thread, called a part thread. It is impossible for two partitions to share
a thread, because of asynchronous termination: the second thread would never run. Every part
thread will try to consume one CPU core entirely, so if there are more partitions than CPU cores,
this will probably hang the system. Thread.setPriority() is often too weak to solve this hogging
problem, so another approach is used.

The runnablePartThreadLimit parameter specifies how many part threads are runnable at the same
time. The other part threads will temporarily block and therefore will not consume any CPU power.

318

This parameter basically specifies how many CPU cores are donated to OptaPlanner. All part
threads share the CPU cores in a round-robin manner to consume (more or less) the same number
of CPU cycles:

The following runnablePartThreadLimit options are supported:

• UNLIMITED: Allow OptaPlanner to occupy all CPU cores, do not avoid hogging. Useful if a no
hogging CPU policy is configured on the OS level.

• AUTO (default): Let OptaPlanner decide how many CPU cores to occupy. This formula is based on
experience. It does not hog all CPU cores on a multi-core machine.

• Static number: The number of CPU cores to consume. For example:

<runnablePartThreadLimit>2</runnablePartThreadLimit>

• JavaScript formula: Formula for the number of CPU cores to occupy. It can use the variable
availableProcessorCount. For example:

<runnablePartThreadLimit>availableProcessorCount - 2</runnablePartThreadLimit>

319

If the runnablePartThreadLimit is equal to or higher than the number of available
processors, the host is likely to hang or freeze, unless there is an OS specific policy
in place to avoid OptaPlanner from hogging all the CPU processors.

320

Chapter 17. Benchmarking and tweaking

17.1. Find the best solver configuration
OptaPlanner supports several optimization algorithms, so you’re probably wondering which is the
best one? Although some optimization algorithms generally perform better than others, it really
depends on your problem domain. Most solver phases have parameters which can be tweaked.
Those parameters can influence the results a lot, even though most solver phases work pretty well
out-of-the-box.

Luckily, OptaPlanner includes a benchmarker, which allows you to play out different solver phases
with different settings against each other in development, so you can use the best configuration for
your planning problem in production.

17.2. Benchmark configuration

17.2.1. Add a dependency on optaplanner-benchmark

The benchmarker is in a separate artifact called optaplanner-benchmark.

If you use Maven, add a dependency in your pom.xml file:

321

 <dependency>
 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-benchmark</artifactId>
 </dependency>

This is similar for Gradle, Ivy and Buildr. The version must be exactly the same as the optaplanner-
core version used (which is automatically the case if you import optaplanner-bom).

If you use ANT, you’ve probably already copied the required jars from the download zip’s binaries
directory.

17.2.2. Run a simple benchmark

To quickly setup a benchmark, create a PlannerBenchmarkFactory from your solver configuration
XML, load a few datasets and benchmark them. For example, with 3 datasets:

PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory
.createFromSolverConfigXmlResource(
 "
org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");

CloudBalance dataset1 = ...;
CloudBalance dataset2 = ...;
CloudBalance dataset3 = ...;
PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark(
 dataset1, dataset2, dataset3);
benchmark.benchmarkAndShowReportInBrowser();

This generates a benchmark report in local/benchmarkReport and shows it in your browser when it’s
finished. The SolverFactory's solver configuration needs a termination to limit how long each
dataset runs. To configure a different benchmark directory, pass a File parameter to
createFromSolverConfigXmlResource().

The generated benchmark report already contains interesting information, but it doesn’t compare
solver configurations to find the best algorithm. To do that, set up an explicit benchmark
configuration:

17.2.3. Configure and run an advanced benchmark

Build a PlannerBenchmark instance with a PlannerBenchmarkFactory. Configure it with a benchmark
configuration XML file, provided as a classpath resource:

322

PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory
.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/benchmark/cloudBalancingBenchmarkConfig.xml")
;
PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();
benchmark.benchmarkAndShowReportInBrowser();

Alternatively, create a PlannerBenchmarkFactory programmatically from a PlannerBenchmarkConfig.

A benchmark configuration XML file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
 <benchmarkDirectory>local/data/nqueens</benchmarkDirectory>

 <inheritedSolverBenchmark>
 <problemBenchmarks>
 ...
 <inputSolutionFile>data/cloudbalancing/unsolved/100computers-
300processes.xml</inputSolutionFile>
 <inputSolutionFile>data/cloudbalancing/unsolved/200computers-
600processes.xml</inputSolutionFile>
 </problemBenchmarks>
 <solver>
 ...<!-- Common solver configuration -->
 </solver>
 </inheritedSolverBenchmark>

 <solverBenchmark>
 <name>Tabu Search</name>
 <solver>
 ...<!-- Tabu Search specific solver configuration -->
 </solver>
 </solverBenchmark>
 <solverBenchmark>
 <name>Simulated Annealing</name>
 <solver>
 ...<!-- Simulated Annealing specific solver configuration -->
 </solver>
 </solverBenchmark>
 <solverBenchmark>
 <name>Late Acceptance</name>
 <solver>
 ...<!-- Late Acceptance specific solver configuration -->
 </solver>
 </solverBenchmark>
</plannerBenchmark>

323

This PlannerBenchmark tries three configurations (Tabu Search, Simulated Annealing and Late
Acceptance) on two data sets (100computers-300processes and 200computers-600processes), so it runs
six solvers.

Every <solverBenchmark> element contains a solver configuration and one or more
<inputSolutionFile> elements. It runs the solver configuration on each of those unsolved solution
files. The element name is optional, because it is generated if absent. The inputSolutionFile is read by
a SolutionFileIO, relative to the working directory.

Use a forward slash (/) as the file separator (for example in the element
<inputSolutionFile>). That will work on any platform (including Windows).

Do not use backslash (\) as the file separator: that breaks portability because it
does not work on Linux and Mac.

The benchmark report is written in the directory specified by the <benchmarkDirectory> element
(relative to the working directory).

It’s recommended that the benchmarkDirectory is a directory that is ignored for
source control and not cleaned by your build system. This way the generated files
are not bloating your source control and they aren’t lost when doing a clean build.
For example in git, it should be added to .gitignore. Usually that directory is called
local.

If an Exception or Error occurs in a single benchmark, the entire Benchmarker does not fail-fast
(unlike everything else in OptaPlanner). Instead, the Benchmarker continues to run all other
benchmarks, write the benchmark report and then fail (if there is at least one failing single
benchmark). The failing benchmarks are clearly marked as such in the benchmark report.

17.2.3.1. Inherited solver benchmark

To lower verbosity, the common parts of multiple <solverBenchmark> elements are extracted to the
<inheritedSolverBenchmark> element. Every property can still be overwritten per <solverBenchmark>
element. Note that inherited solver phases such as <constructionHeuristic> or <localSearch> are not
overwritten but instead are added to the tail of the solver phases list.

17.2.4. SolutionFileIO: input and output of solution files

17.2.4.1. SolutionFileIO interface

The benchmarker needs to be able to read the input files to load a problem. Also, it optionally
writes the best solution of each benchmark to an output file. It does that through the SolutionFileIO
interface which has a read and write method:

324

public interface SolutionFileIO<Solution_> {
 ...

 Solution_ read(File inputSolutionFile);
 void write(Solution_ solution, File outputSolutionFile);

}

The SolutionFileIO interface is in the optaplanner-persistence-common jar (which is a dependency of
the optaplanner-benchmark jar). There are several ways to serialize a solution:

17.2.4.2. XStreamSolutionFileIO: serialize to and from an XML format

To use the XStreamSolutionFileIO instance to read and write solutions, configure your
@PlanningSolution class as an xStreamAnnotatedClass:

 <problemBenchmarks>
 <xStreamAnnotatedClass>
org.optaplanner.examples.nqueens.domain.NQueens</xStreamAnnotatedClass>
 <inputSolutionFile>data/nqueens/unsolved/32queens.xml</inputSolutionFile>
 ...
 </problemBenchmarks>

Those input files need to have been written with a XStreamSolutionFileIO instance, not just any
XStream instance, because the XStreamSolutionFileIO uses a customized XStream instance.

The inputSolutionFile needs to come from a trusted source: if it contains malicious
data, it can be exploited. The XStreamSolutionFileIO disables the XStream security
framework, so it just works out of the box.

If you expose benchmarking in production, use
XStreamSolutionFileIO.getXStream() to enable the security framework and
explicitly whitelist all marshalled classes.

Add XStream annotations (such as @XStreamAlias) on your domain classes to use a less verbose XML
format. Regardless, XML is still a very verbose format. Reading or writing large datasets in this
format can cause an OutOfMemoryError, StackOverflowError or large performance degradation.

17.2.4.3. Custom SolutionFileIO: serialize to and from a custom format

Implement your own SolutionFileIO implementation and configure it with the solutionFileIOClass
element to write to a custom format (such as a txt or a binary format):

325

 <problemBenchmarks>

<solutionFileIOClass>org.optaplanner.examples.machinereassignment.persistence.MachineR
eassignmentFileIO</solutionFileIOClass>
 <inputSolutionFile>
data/machinereassignment/import/model_a1_1.txt</inputSolutionFile>
 ...
 </problemBenchmarks>

It’s recommended that output files can be read as input files, which implies that
getInputFileExtension() and getOutputFileExtension() return the same value.

 A SolutionFileIO implementation must be thread-safe.

17.2.4.4. Reading an input solution from a database or other storage

There are two options if your dataset is in a relational database or another type of repository:

• Extract the datasets from the database and serialize them to a local file (for example as XML
with XStreamSolutionFileIO if XML isn’t too verbose). Then use those files in <inputSolutionFile>
elements.

◦ The benchmarks are now more reliable because they run offline.

◦ Each dataset is only loaded just in time.

• Load all the datasets in advance and pass them to the buildPlannerBenchmark() method:

 PlannerBenchmark plannerBenchmark = benchmarkFactory.buildPlannerBenchmark
(dataset1, dataset2, dataset3);

17.2.5. Warming up the HotSpot compiler

Without a warm up, the results of the first (or first few) benchmarks are not reliable because they
lose CPU time on HotSpot JIT compilation (and possibly DRL compilation too).

To avoid that distortion, the benchmarker runs some of the benchmarks for 30 seconds, before
running the real benchmarks. That default warm up of 30 seconds usually suffices. Change it, for
example to give it 60 seconds:

<plannerBenchmark>
 ...
 <warmUpSecondsSpentLimit>60</warmUpSecondsSpentLimit>
 ...
</plannerBenchmark>

Turn off the warm up phase altogether by setting it to zero:

326

<plannerBenchmark>
 ...
 <warmUpSecondsSpentLimit>0</warmUpSecondsSpentLimit>
 ...
</plannerBenchmark>

The warm up time budget does not include the time it takes to load the datasets.
With large datasets, this can cause the warm up to run considerably longer than
specified in the configuration.

17.2.6. Benchmark blueprint: a predefined configuration

To quickly configure and run a benchmark for typical solver configs, use a
solverBenchmarkBluePrint instead of solverBenchmarks:

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
 <benchmarkDirectory>local/data/nqueens</benchmarkDirectory>

 <inheritedSolverBenchmark>
 <problemBenchmarks>
 <xStreamAnnotatedClass>
org.optaplanner.examples.nqueens.domain.NQueens</xStreamAnnotatedClass>
 <inputSolutionFile>data/nqueens/unsolved/32queens.xml</inputSolutionFile>
 <inputSolutionFile>data/nqueens/unsolved/64queens.xml</inputSolutionFile>
 </problemBenchmarks>
 <solver>
 <scanAnnotatedClasses/>
 <scoreDirectorFactory>
 <scoreDrl>
org/optaplanner/examples/nqueens/solver/nQueensScoreRules.drl</scoreDrl>
 <initializingScoreTrend>ONLY_DOWN</initializingScoreTrend>
 </scoreDirectorFactory>
 <termination>
 <minutesSpentLimit>1</minutesSpentLimit>
 </termination>
 </solver>
 </inheritedSolverBenchmark>

 <solverBenchmarkBluePrint>

<solverBenchmarkBluePrintType>EVERY_CONSTRUCTION_HEURISTIC_TYPE_WITH_EVERY_LOCAL_SEARC
H_TYPE</solverBenchmarkBluePrintType>
 </solverBenchmarkBluePrint>
</plannerBenchmark>

The following SolverBenchmarkBluePrintTypes are supported:

327

• CONSTRUCTION_HEURISTIC_WITH_AND_WITHOUT_LOCAL_SEARCH: Run the default Construction Heuristic
type with and without the default Local Search type.

• EVERY_CONSTRUCTION_HEURISTIC_TYPE: Run every Construction Heuristic type (First Fit, First Fit
Decreasing, Cheapest Insertion, …).

• EVERY_LOCAL_SEARCH_TYPE: Run every Local Search type (Tabu Search, Late Acceptance, …) with
the default Construction Heuristic.

• EVERY_CONSTRUCTION_HEURISTIC_TYPE_WITH_EVERY_LOCAL_SEARCH_TYPE: Run every Construction
Heuristic type with every Local Search type.

17.2.7. Write the output solution of benchmark runs

The best solution of each benchmark run can be written in the benchmarkDirectory. By default, this
is disabled, because the files are rarely used and considered bloat. Also, on large datasets, writing
the best solution of each single benchmark can take quite some time and memory (causing an
OutOfMemoryError), especially in a verbose format like XStream XML.

To write those solutions in the benchmarkDirectory, enable writeOutputSolutionEnabled:

 <problemBenchmarks>
 ...
 <writeOutputSolutionEnabled>true</writeOutputSolutionEnabled>
 ...
 </problemBenchmarks>

17.2.8. Benchmark logging

Benchmark logging is configured like solver logging.

To separate the log messages of each single benchmark run into a separate file, use the MDC with
key singleBenchmark.name in a sifting appender. For example with Logback in logback.xml:

 <appender name="fileAppender" class="ch.qos.logback.classic.sift.SiftingAppender">
 <discriminator>
 <key>singleBenchmark.name</key>
 <defaultValue>app</defaultValue>
 </discriminator>
 <sift>
 <appender name="fileAppender.${singleBenchmark.name}" class="...FileAppender">
 <file>local/log/optaplannerBenchmark-${singleBenchmark.name}.log</file>
 ...
 </appender>
 </sift>
 </appender>

328

http://logback.qos.ch/manual/mdc.html

17.3. Benchmark report

17.3.1. HTML report

After running a benchmark, an HTML report will be written in the benchmarkDirectory with the
index.html filename. Open it in your browser. It has a nice overview of your benchmark including:

• Summary statistics: graphs and tables

• Problem statistics per inputSolutionFile: graphs and CSV

• Each solver configuration (ranked): Handy to copy and paste

• Benchmark information: settings, hardware, …

 Graphs are generated by the excellent JFreeChart library.

The HTML report will use your default locale to format numbers. If you share the benchmark
report with people from another country, consider overwriting the locale accordingly:

<plannerBenchmark>
 ...
 <benchmarkReport>
 <locale>en_US</locale>
 </benchmarkReport>
 ...
</plannerBenchmark>

17.3.2. Ranking the solvers

The benchmark report automatically ranks the solvers. The Solver with rank 0 is called the favorite
Solver: it performs best overall, but it might not be the best on every problem. It’s recommended to
use that favorite Solver in production.

However, there are different ways of ranking the solvers. Configure it like this:

<plannerBenchmark>
 ...
 <benchmarkReport>
 <solverRankingType>TOTAL_SCORE</solverRankingType>
 </benchmarkReport>
 ...
</plannerBenchmark>

The following solverRankingTypes are supported:

• TOTAL_SCORE (default): Maximize the overall score, so minimize the overall cost if all solutions
would be executed.

329

http://www.jfree.org/jfreechart/

• WORST_SCORE: Minimize the worst case scenario.

• TOTAL_RANKING: Maximize the overall ranking. Use this if your datasets differ greatly in size or
difficulty, producing a difference in Score magnitude.

Solvers with at least one failed single benchmark do not get a ranking. Solvers with not fully
initialized solutions are ranked worse.

To use a custom ranking, implement a Comparator:

 <benchmarkReport>
 <solverRankingComparatorClass>
...TotalScoreSolverRankingComparator</solverRankingComparatorClass>
 </benchmarkReport>

Or by implementing a weight factory:

 <benchmarkReport>
 <solverRankingWeightFactoryClass>
...TotalRankSolverRankingWeightFactory</solverRankingWeightFactoryClass>
 </benchmarkReport>

17.4. Summary statistics

17.4.1. Best score summary (graph and table)

Shows the best score per inputSolutionFile for each solver configuration.

Useful for visualizing the best solver configuration.

330

Figure 8. Best score summary statistic

17.4.2. Best score scalability summary (graph)

Shows the best score per problem scale for each solver configuration.

Useful for visualizing the scalability of each solver configuration.

The problem scale will report 0 if any @ValueRangeProvider method signature
returns ValueRange (instead of CountableValueRange or Collection).

17.4.3. Best score distribution summary (graph)

Shows the best score distribution per inputSolutionFile for each solver configuration.

Useful for visualizing the reliability of each solver configuration.

331

Figure 9. Best Score Distribution Summary Statistic

Enable statistical benchmarking to use this summary.

17.4.4. Winning score difference summary (graph And table)

Shows the winning score difference per inputSolutionFile for each solver configuration. The
winning score difference is the score difference with the score of the winning solver configuration
for that particular inputSolutionFile.

Useful for zooming in on the results of the best score summary.

17.4.5. Worst score difference percentage (ROI) summary (graph And table)

Shows the return on investment (ROI) per inputSolutionFile for each solver configuration if you’d
upgrade from the worst solver configuration for that particular inputSolutionFile.

Useful for visualizing the return on investment (ROI) to decision makers.

17.4.6. Score calculation speed summary (graph And table)

Shows the score calculation speed: a count per second per problem scale for each solver
configuration.

Useful for comparing different score calculators and/or score rule implementations (presuming

332

that the solver configurations do not differ otherwise). Also useful to measure the scalability cost of
an extra constraint.

17.4.7. Time spent summary (graph And table)

Shows the time spent per inputSolutionFile for each solver configuration. This is pointless if it’s
benchmarking against a fixed time limit.

Useful for visualizing the performance of construction heuristics (presuming that no other solver
phases are configured).

17.4.8. Time spent scalability summary (graph)

Shows the time spent per problem scale for each solver configuration. This is pointless if it’s
benchmarking against a fixed time limit.

Useful for extrapolating the scalability of construction heuristics (presuming that no other solver
phases are configured).

17.4.9. Best score per time spent summary (graph)

Shows the best score per time spent for each solver configuration. This is pointless if it’s
benchmarking against a fixed time limit.

Useful for visualizing trade-off between the best score versus the time spent for construction
heuristics (presuming that no other solver phases are configured).

17.5. Statistic per dataset (graph and CSV)

17.5.1. Enable a problem statistic

The benchmarker supports outputting problem statistics as graphs and CSV (comma separated
values) files to the benchmarkDirectory. To configure one or more, add a problemStatisticType line
for each one:

<plannerBenchmark>
 <benchmarkDirectory>local/data/nqueens/solved</benchmarkDirectory>
 <inheritedSolverBenchmark>
 <problemBenchmarks>
 ...
 <problemStatisticType>BEST_SCORE</problemStatisticType>
 <problemStatisticType>SCORE_CALCULATION_SPEED</problemStatisticType>
 </problemBenchmarks>
 ...
 </inheritedSolverBenchmark>
 ...
</plannerBenchmark>

333

These problem statistics can slow down the solvers noticeably, which affects the
benchmark results. That’s why they are optional and only BEST_SCORE is enabled by
default. To disable that one too, use problemStatisticEnabled:

 <problemBenchmarks>
 ...
 <problemStatisticEnabled>false</problemStatisticEnabled>
 </problemBenchmarks>

The summary statistics do not slow down the solver and are always generated.

The following types are supported:

17.5.2. Best score over time statistic (graph and CSV)

Shows how the best score evolves over time. It is run by default. To run it when other statistics are
configured, also add:

 <problemBenchmarks>
 ...
 <problemStatisticType>BEST_SCORE</problemStatisticType>
 </problemBenchmarks>

334

Figure 10. Best Score Over Time Statistic

A time gradient based algorithm (such as Simulated Annealing) will have a
different statistic if it’s run with a different time limit configuration. That’s
because this Simulated Annealing implementation automatically determines its
velocity based on the amount of time that can be spent. On the other hand, for the
Tabu Search and Late Acceptance, what you see is what you’d get.

The best score over time statistic is very useful to detect abnormalities, such as a potential
score trap which gets the solver temporarily stuck in a local optima.

335

17.5.3. Step score over time statistic (graph and CSV)

To see how the step score evolves over time, add:

 <problemBenchmarks>
 ...
 <problemStatisticType>STEP_SCORE</problemStatisticType>
 </problemBenchmarks>

336

Figure 11. Step Score Over Time Statistic

Compare the step score statistic with the best score statistic (especially on parts for which the best
score flatlines). If it hits a local optima, the solver should take deteriorating steps to escape it. But it
shouldn’t deteriorate too much either.

The step score statistic has been seen to slow down the solver noticeably due to GC
stress, especially for fast stepping algorithms (such as Simulated Annealing and
Late Acceptance).

17.5.4. Score calculation speed over time statistic (graph and CSV)

To see how fast the scores are calculated, add:

 <problemBenchmarks>
 ...
 <problemStatisticType>SCORE_CALCULATION_SPEED</problemStatisticType>
 </problemBenchmarks>

337

Figure 12. Score Calculation Speed Statistic

The initial high calculation speed is typical during solution initialization: it’s far
easier to calculate the score of a solution if only a handful planning entities have
been initialized, than when all the planning entities are initialized.

After those few seconds of initialization, the calculation speed is relatively stable,
apart from an occasional stop-the-world garbage collector disruption.

17.5.5. Best solution mutation over time statistic (graph and CSV)

To see how much each new best solution differs from the previous best solution, by counting the
number of planning variables which have a different value (not including the variables that have
changed multiple times but still end up with the same value), add:

 <problemBenchmarks>
 ...
 <problemStatisticType>BEST_SOLUTION_MUTATION</problemStatisticType>
 </problemBenchmarks>

338

Figure 13. Best Solution Mutation Over Time Statistic

Use Tabu Search - an algorithm that behaves like a human - to get an estimation on how difficult it
would be for a human to improve the previous best solution to that new best solution.

17.5.6. Move count per step statistic (graph and CSV)

To see how the selected and accepted move count per step evolves over time, add:

 <problemBenchmarks>
 ...
 <problemStatisticType>MOVE_COUNT_PER_STEP</problemStatisticType>
 </problemBenchmarks>

339

Figure 14. Move Count Per Step Statistic

This statistic has been seen to slow down the solver noticeably due to GC stress,
especially for fast stepping algorithms (such as Simulated Annealing and Late
Acceptance).

17.5.7. Memory use statistic (graph and CSV)

To see how much memory is used, add:

 <problemBenchmarks>
 ...
 <problemStatisticType>MEMORY_USE</problemStatisticType>
 </problemBenchmarks>

340

Figure 15. Memory Use Statistic

 == The memory use statistic has been seen to affect the solver noticeably. ==

17.6. Statistic per single benchmark (graph and CSV)

17.6.1. Enable a single statistic

A single statistic is static for one dataset for one solver configuration. Unlike a problem statistic, it
does not aggregate over solver configurations.

The benchmarker supports outputting single statistics as graphs and CSV (comma separated values)
files to the benchmarkDirectory. To configure one, add a singleStatisticType line:

341

<plannerBenchmark>
 <benchmarkDirectory>local/data/nqueens/solved</benchmarkDirectory>
 <inheritedSolverBenchmark>
 <problemBenchmarks>
 ...
 <problemStatisticType>...</problemStatisticType>
 <singleStatisticType>PICKED_MOVE_TYPE_BEST_SCORE_DIFF</singleStatisticType>
 </problemBenchmarks>
 ...
 </inheritedSolverBenchmark>
 ...
</plannerBenchmark>

Multiple singleStatisticType elements are allowed.

These statistic per single benchmark can slow down the solver noticeably, which
affects the benchmark results. That’s why they are optional and not enabled by
default.

The following types are supported:

17.6.2. Constraint match total best score over time statistic (graph and CSV)

To see which constraints are matched in the best score (and how much) over time, add:

 <problemBenchmarks>
 ...
 <singleStatisticType>CONSTRAINT_MATCH_TOTAL_BEST_SCORE</singleStatisticType>
 </problemBenchmarks>

342

Figure 16. Constraint Match Total Best Score Diff Over Time Statistic

Requires the score calculation to support constraint matches. Drools score calculation supports
constraint matches automatically, but incremental Java score calculation requires more work.

 The constraint match total statistics affect the solver noticeably.

17.6.3. Constraint match total step score over time statistic (graph and CSV)

To see which constraints are matched in the step score (and how much) over time, add:

 <problemBenchmarks>
 ...
 <singleStatisticType>CONSTRAINT_MATCH_TOTAL_STEP_SCORE</singleStatisticType>
 </problemBenchmarks>

343

Figure 17. Constraint Match Total Step Score Diff Over Time Statistic

Also requires the score calculation to support constraint matches.

 The constraint match total statistics affect the solver noticeably.

17.6.4. Picked move type best score diff over time statistic (graph and CSV)

To see which move types improve the best score (and how much) over time, add:

 <problemBenchmarks>
 ...
 <singleStatisticType>PICKED_MOVE_TYPE_BEST_SCORE_DIFF</singleStatisticType>
 </problemBenchmarks>

344

Figure 18. Picked Move Type Best Score Diff Over Time Statistic

17.6.5. Picked move type step score diff over time statistic (graph and CSV)

To see how much each winning step affects the step score over time, add:

 <problemBenchmarks>
 ...
 <singleStatisticType>PICKED_MOVE_TYPE_STEP_SCORE_DIFF</singleStatisticType>
 </problemBenchmarks>

345

Figure 19. Picked Move Type Step Score Diff Over Time Statistic

17.7. Advanced benchmarking

17.7.1. Benchmarking performance tricks

17.7.1.1. Parallel benchmarking on multiple threads

If you have multiple processors available on your computer, you can run multiple benchmarks in
parallel on multiple threads to get your benchmarks results faster:

<plannerBenchmark>
 ...
 <parallelBenchmarkCount>AUTO</parallelBenchmarkCount>
 ...
</plannerBenchmark>

Running too many benchmarks in parallel will affect the results of benchmarks
negatively. Leave some processors unused for garbage collection and other
processes.

The following parallelBenchmarkCounts are supported:

346

• 1 (default): Run all benchmarks sequentially.

• AUTO: Let OptaPlanner decide how many benchmarks to run in parallel. This formula is based on
experience. It’s recommended to prefer this over the other parallel enabling options.

• Static number: The number of benchmarks to run in parallel.

<parallelBenchmarkCount>2</parallelBenchmarkCount>

• JavaScript formula: Formula for the number of benchmarks to run in parallel. It can use the
variable availableProcessorCount. For example:

<parallelBenchmarkCount>(availableProcessorCount / 2) + 1</parallelBenchmarkCount>

The parallelBenchmarkCount is always limited to the number of available
processors. If it’s higher, it will be automatically decreased.

If you have a computer with slow or unreliable cooling, increasing the
parallelBenchmarkCount above one (even on AUTO) may overheat your CPU.

The sensors command can help you detect if this is the case. It is available in the
package lm_sensors or lm-sensors in most Linux distributions. There are several
freeware tools available for Windows too.

The benchmarker uses a thread pool internally, but you can optionally plug in a custom
ThreadFactory, for example when running benchmarks on an application server or a cloud
platform:

<plannerBenchmark>
 ...
 <threadFactoryClass>...MyCustomThreadFactory</threadFactoryClass>
 ...
</plannerBenchmark>

In the future, we will also support multi-JVM benchmarking. This feature is
independent of multithreaded solving or multi-JVM solving.

17.7.2. Statistical benchmarking

To minimize the influence of your environment and the Random Number Generator on the
benchmark results, configure the number of times each single benchmark run is repeated. The
results of those runs are statistically aggregated. Each individual result is also visible in the report,
as well as plotted in the best score distribution summary.

Just add a <subSingleCount> element to an <inheritedSolverBenchmark> element or in a
<solverBenchmark> element:

347

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
 ...
 <inheritedSolverBenchmark>
 ...
 <solver>
 ...
 </solver>
 <subSingleCount>10</subSingleCount>
 </inheritedSolverBenchmark>
 ...
</plannerBenchmark>

The subSingleCount defaults to 1 (so no statistical benchmarking).

If subSingleCount is higher than 1, the benchmarker will automatically use a
differentRandom seed for every sub single run, without losing reproducibility (for
each sub single index) in EnvironmentModeREPRODUCIBLE and lower.

17.7.3. Template-based benchmarking and matrix benchmarking

Matrix benchmarking is benchmarking a combination of value sets. For example: benchmark four
entityTabuSize values (5, 7, 11 and 13) combined with three acceptedCountLimit values (500, 1000 and
2000), resulting in 12 solver configurations.

To reduce the verbosity of such a benchmark configuration, you can use a Freemarker template for
the benchmark configuration instead:

348

http://freemarker.org/

<plannerBenchmark>
 ...
 <inheritedSolverBenchmark>
 ...
 </inheritedSolverBenchmark>

<#list [5, 7, 11, 13] as entityTabuSize>
<#list [500, 1000, 2000] as acceptedCountLimit>
 <solverBenchmark>
 <name>Tabu Search entityTabuSize ${entityTabuSize} acceptedCountLimit
${acceptedCountLimit}</name>
 <solver>
 <localSearch>
 <unionMoveSelector>
 <changeMoveSelector/>
 <swapMoveSelector/>
 </unionMoveSelector>
 <acceptor>
 <entityTabuSize>${entityTabuSize}</entityTabuSize>
 </acceptor>
 <forager>
 <acceptedCountLimit>${acceptedCountLimit}</acceptedCountLimit>
 </forager>
 </localSearch>
 </solver>
 </solverBenchmark>
</#list>
</#list>
</plannerBenchmark>

To configure Matrix Benchmarking for Simulated Annealing (or any other configuration that
involves a Score template variable), use the replace() method in the solver benchmark name
element:

349

<plannerBenchmark>
 ...
 <inheritedSolverBenchmark>
 ...
 </inheritedSolverBenchmark>

<#list ["1hard/10soft", "1hard/20soft", "1hard/50soft", "1hard/70soft"] as
startingTemperature>
 <solverBenchmark>
 <name>Simulated Annealing startingTemperature ${startingTemperature?replace("/",
"_")}</name>
 <solver>
 <localSearch>
 <acceptor>
 <simulatedAnnealingStartingTemperature>
${startingTemperature}</simulatedAnnealingStartingTemperature>
 </acceptor>
 </localSearch>
 </solver>
 </solverBenchmark>
</#list>
</plannerBenchmark>

A solver benchmark name doesn’t allow some characters (such a /) because the
name is also used a file name.

And build it with the class PlannerBenchmarkFactory:

 PlannerBenchmarkFactory benchmarkFactory = PlannerBenchmarkFactory
.createFromFreemarkerXmlResource(

"org/optaplanner/examples/cloudbalancing/optional/benchmark/cloudBalancingBenchmarkCon
figTemplate.xml.ftl");
 PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();

17.7.4. Benchmark report aggregation

The BenchmarkAggregator takes one or more existing benchmarks and merges them into new
benchmark report, without actually running the benchmarks again.

350

This is useful to:

• Report on the impact of code changes: Run the same benchmark configuration before and
after the code changes, then aggregate a report.

• Report on the impact of dependency upgrades: Run the same benchmark configuration
before and after upgrading the dependency, then aggregate a report.

• Summarize a too verbose report: Select only the interesting solver benchmarks from the
existing report. This especially useful on template reports to make the graphs readable.

• Partially rerun a benchmark: Rerun part of an existing report (for example only the failed or
invalid solvers), then recreate the original intended report with the new values.

Compose the aggregated report in the Benchmark aggregator UI:

351

To display that UI, provide a benchmark config to the BenchmarkAggregatorFrame:

 public static void main(String[] args) {
 BenchmarkAggregatorFrame.createAndDisplayFromXmlResource(

"org/optaplanner/examples/cloudbalancing/benchmark/cloudBalancingBenchmarkConfig.xml")
;
 }

Despite that it uses a benchmark configuration as input, it ignores all elements of
that configuration, except for the elements <benchmarkDirectory> and
<benchmarkReport>.

In the GUI, select the interesting benchmarks and click the button to generate the aggregated
report.

All the input reports which are being merged should have been generated with the
same OptaPlanner version (excluding hotfix differences) as the
BenchmarkAggregator. Using reports from different OptaPlanner major or minor
versions are not guaranteed to succeed and deliver correct information, because
the benchmark report data structure often changes.

352

Chapter 18. Repeated planning

18.1. Introduction to repeated planning
The problem facts used to create a solution may change before or during the execution of that
solution. Delaying planning in order to lower the risk of problem facts changing is not ideal, as an
incomplete plan is preferable to no plan.

The following examples demonstrate situations where planning solutions need to be altered due to
unpredictable changes:

• Unforeseen fact changes

◦ An employee assigned to a shift calls in sick.

◦ An airplane scheduled to take off has a technical delay.

◦ One of the machines or vehicles break down.

Unforeseen fact changes benefit from using backup planning.

• Cannot assign all entities immediately

Leave some unassigned. For example:

◦ There are 10 shifts at the same time to assign but only nine employees to handle shifts.

For this type of planning, use overconstrained planning.

• Unknown long term future facts

For example:

◦ Hospital admissions for the next two weeks are reliable, but those for week three and four
are less reliable, and for week five and beyond are not worth planning yet.

This problem benefits from continuous planning.

• Constantly changing problem facts

Use real-time planning.

More CPU time results in a better planning solution.

OptaPlanner allows you to start planning earlier, despite unforeseen changes, as the optimization
algorithms support planning a solution that has already been partially planned. This is known as
repeated planning.

18.2. Backup planning
Backup planning adds extra score constraints to create space in the planning for when things go

353

wrong. That creates a backup plan within the plan itself.

An example of backup planning is as follows:

1. Create an extra score constraint. For example:

◦ Assign an employee as the spare employee (one for every 10 shifts at the same time).

◦ Keep one hospital bed open in each department.

2. Change the planning problem when an unforeseen event occurs.

For example, if an employee calls in sick:

◦ Delete the sick employee and leave their shifts unassigned.

◦ Restart the planning, starting from that solution, which now has a different score.

The construction heuristics fills in the newly created gaps (probably with the spare employee) and
the metaheuristics will improve it even further.

18.3. Overconstrained planning
When there is no feasible solution to assign all planning entities, it is preferable to assign as many
entities as possible without breaking hard constraints. This is called overconstrained planning.

By default, OptaPlanner assigns all planning entities, overloads the planning values, and therefore
breaks hard constraints. There are two ways to avoid this:

• Use nullable planning variables, so that some entities are unassigned.

• Add virtual values to catch the unassigned entities.

18.3.1. Overconstrained planning with nullable variables

If we handle overconstrained planning with nullable variables, the overload entities will be left
unassigned:

354

To implement this:

1. Add an additional score level (usually a medium level between the hard and soft level) by
switching Score type.

2. Make the planning variable nullable.

3. Add a score constraint on the new level (usually a medium constraint) to penalize the number
of unassigned entities (or a weighted sum of them).

18.3.2. Overconstrained planning with virtual values

In overconstrained planning it is often useful to know which resources are lacking. In
overconstrained planning with virtual values, the solution indicates which resources to buy.

To implement this:

1. Add an additional score level (usually a medium level between the hard and soft level) by
switching Score type.

2. Add a number of virtual values. It can be difficult to determine a good formula to calculate that
number:

◦ Do not add too many, as that will decrease solver efficiency.

◦ Importantly, do not add too few as that will lead to an infeasible solution.

3. Add a score constraint on the new level (usually a medium constraint) to penalize the number

355

of virtual assigned entities (or a weighted sum of them).

4. Optionally, change all soft constraints to ignore virtual assigned entities.

18.4. Continuous planning (windowed planning)
Continuous planning is the technique of planning one or more upcoming planning periods at the
same time and repeating that process monthly, weekly, daily, hourly, or even more frequently.
However, as time is infinite, planning all future time periods is impossible.

In the employee rostering example above, we re-plan every four days. Each time, we actually plan a
window of 12 days, but we only publish the first four days, which is stable enough to share with the
employees, so they can plan their social life accordingly.

356

In the hospital bed planning example above, notice the difference between the original planning of
November 1st and the new planning of November 5th: some problem facts (F, H, I, J, K) changed in
the meantime, which results in unrelated planning entities (G) changing too.

The planning window can be split up in several stages:

• History

Immutable past time periods. It contains only immovable entities.

◦ Recent historic entities can also affect score constraints that apply to movable entities. For
example, in nurse rostering, a nurse that has worked the last three historic weekends in a
row should not be assigned to three more weekends in a row, because she requires a one
free weekend per month.

◦ Do not load all historic entities in memory: even though immovable entities do not affect
solving performance, they can cause out of memory problems when the data grows to years.
Only load those that might still affect the current constraints with a good safety margin.

• Published

Upcoming time periods that have been published. They contain only Immovable and/or semi-
immovable planning entities.

◦ The published schedule has been shared with the business. For example, in nurse rostering,
the nurses will use this schedule to plan their personal lives, so they require a publish notice

357

of for example 3 weeks in advance. Normal planning will not change that part of schedule.

Changing that schedule later is disruptive, but were exceptions force us to do them anyway
(for example someone calls in sick), do change this part of the planning while minimizing
disruption with non-disruptive replanning.

• Draft

Upcoming time periods after the published time periods that can change freely. They contain
movable planning entities, except for any that are immovable for other reasons (such as being
pinned by a user).

◦ The first part of the draft, called the final draft, will be published, so these planning entities
can change one last time. The publishing frequency, for example once per week, determines
the number of time periods that change from draft to published.

◦ The latter time periods of the draft are likely change again in later planning efforts,
especially if some of the problem facts change by then (for example nurse Ann doesn’t want
to work on one of those days).

Despite that these latter planning entities might still change a lot, we can’t leave them out
for later, because we would risk painting ourselves into a corner. For example, in employee
rostering we could have all our rare skilled employees working the last 5 days of the week
that gets published, which won’t reduce the score of that week, but will make it impossible
for us to deliver a feasible schedule the next week. So the draft length needs to be longer
than the part that will be published first.

◦ That draft part is usually not shared with the business yet, because it is too volatile and it
would only raise false expectations. However, it is stored in the database and used as a
starting point for the next solver.

• Unplanned (out of scope)

Planning entities that are not in the current planning window.

◦ If the planning window is too small to plan all entities, you’re dealing with overconstrained
planning.

◦ If time is a planning variable, the size of the planning window is determined dynamically, in
which case the unplanned stage is not applicable.

358

18.4.1. Immovable planning entities

An immovable planning entity doesn’t change during solving. This is commonly used by users to
pin down one or more specific assignments and force OptaPlanner to schedule around those fixed
assignments.

18.4.1.1. Pin down planning entities with @PlanningPin

To make some planning entities immovable, add an @PlanningPin annotation on a boolean getter or
field of the planning entity class. That boolean is true if the entity is immovable (pinned down to its
current planning values) and false otherwise.

1. Add the @PlanningPin annotation on a boolean:

359

@PlanningEntity
public class Lecture {

 private boolean pinned;
 ...

 @PlanningPin
 public boolean isPinned() {
 return pinned;
 }

 ...
}

In the example above, if pinned is true, the lecture will not be assigned to another period or room
(even if the current period and rooms fields are null).

18.4.1.2. Configure a movable EntitySelectionFilter

Alternatively, to make some planning entities immovable, add an entity SelectionFilter that
returns true if an entity is movable, and false if it is immovable. This is more flexible and more
verbose than the @PlanningPin approach.

For example on the nurse rostering example:

1. Add the SelectionFilter:

public class MovableShiftAssignmentSelectionFilter implements SelectionFilter
<NurseRoster, ShiftAssignment> {

 @Override
 public boolean accept(ScoreDirector<NurseRoster> scoreDirector, ShiftAssignment
shiftAssignment) {
 NurseRoster nurseRoster = scoreDirector.getWorkingSolution();
 ShiftDate shiftDate = shiftAssignment.getShift().getShiftDate();
 return nurseRoster.getNurseRosterInfo().isInPlanningWindow(shiftDate);
 }

}

2. Configure the SelectionFilter:

@PlanningEntity(movableEntitySelectionFilter =
MovableShiftAssignmentSelectionFilter.class)
public class ShiftAssignment {
 ...
}

360

18.4.2. Nonvolatile replanning to minimize disruption (semi-movable
planning entities)

Replanning an existing plan can be very disruptive. If the plan affects humans (such as employees,
drivers, …), very disruptive changes are often undesirable. In such cases, nonvolatile replanning
helps by restricting planning freedom: the gain of changing a plan must be higher than the
disruption it causes. This is usually implemented by taxing all planning entities that change.

In the machine reassignment example, the entity has both the planning variable machine and its
original value originalMachine:

361

@PlanningEntity(...)
public class ProcessAssignment {

 private MrProcess process;
 private Machine originalMachine;
 private Machine machine;

 public Machine getOriginalMachine() {...}

 @PlanningVariable(...)
 public Machine getMachine() {...}

 public boolean isMoved() {
 return originalMachine != null && originalMachine != machine;
 }

 ...
}

During planning, the planning variable machine changes. By comparing it with the originalMachine,
a change in plan can be penalized:

rule "processMoved"
 when
 ProcessAssignment(moved == true)
 then
 scoreHolder.addSoftConstraintMatch(kcontext, -1000);
end

The soft penalty of -1000 means that a better solution is only accepted if it improves the soft score
for at least 1000 points per variable changed (or if it improves the hard score).

18.5. Real-time planning
To do real-time planning, combine the following planning techniques:

• Backup planning - adding extra score constraints to allow for unforeseen changes.

• Continuous planning - planning for one or more future planning periods.

• Short planning windows.

This lowers the burden of real-time planning.

As time passes, the problem itself changes. Consider the vehicle routing use case:

362

In the example above, three customers are added at different times (07:56, 08:02 and 08:45), after
the original customer set finished solving at 07:55, and in some cases, after the vehicles have
already left.

OptaPlanner can handle such scenarios with ProblemFactChange (in combination with immovable
planning entities).

18.5.1. ProblemFactChange

While the Solver is solving, one of the problem facts may be changed by an outside event. For
example, an airplane is delayed and needs the runway at a later time.

Do not change the problem fact instances used by the Solver while it is solving
(from another thread or even in the same thread), as that will corrupt it.

Add a ProblemFactChange to the Solver, which it executes in the solver thread as soon as possible. For
example:

363

public interface Solver<Solution_> {

 ...

 boolean addProblemFactChange(ProblemFactChange<Solution_> problemFactChange);

 boolean isEveryProblemFactChangeProcessed();

 ...

}

public interface ProblemFactChange<Solution_> {

 void doChange(ScoreDirector<Solution_> scoreDirector);

}

The ScoreDirector must be updated with any change on the problem facts of
planning entities in a ProblemFactChange.

To write a ProblemFactChange correctly, it is important to understand the behavior of a planning
clone.

A planning clone of a solution must fulfill these requirements:

• The clone must represent the same planning problem. Usually it reuses the same instances of
the problem facts and problem fact collections as the original.

• The clone must use different, cloned instances of the entities and entity collections. Changes to
an original Solution entity’s variables must not affect its clone.

18.5.1.1. Cloud balancing ProblemFactChange example

Consider the following example of a ProblemFactChange implementation in the cloud balancing use
case:

364

 public void deleteComputer(final CloudComputer computer) {
 solver.addProblemFactChange(scoreDirector -> {
 CloudBalance cloudBalance = scoreDirector.getWorkingSolution();
 CloudComputer workingComputer = scoreDirector.lookUpWorkingObject(
computer);
 // First remove the problem fact from all planning entities that use it
 for (CloudProcess process : cloudBalance.getProcessList()) {
 if (process.getComputer() == workingComputer) {
 scoreDirector.beforeVariableChanged(process, "computer");
 process.setComputer(null);
 scoreDirector.afterVariableChanged(process, "computer");
 }
 }
 // A SolutionCloner does not clone problem fact lists (such as
computerList)
 // Shallow clone the computerList so only workingSolution is affected, not
bestSolution or guiSolution
 ArrayList<CloudComputer> computerList = new ArrayList<>(cloudBalance
.getComputerList());
 cloudBalance.setComputerList(computerList);
 // Remove the problem fact itself
 scoreDirector.beforeProblemFactRemoved(workingComputer);
 computerList.remove(workingComputer);
 scoreDirector.afterProblemFactRemoved(workingComputer);
 scoreDirector.triggerVariableListeners();
 });
 }

1. Any change in a ProblemFactChange must be done on the @PlanningSolution instance of
scoreDirector.getWorkingSolution().

2. The workingSolution is a planning clone of the BestSolutionChangedEvent's bestSolution.

◦ The workingSolution in the Solver is never the same solution instance as in the rest of your
application: it is a planning clone.

◦ A planning clone also clones the planning entities and planning entity collections.

So any change on the planning entities must happen on the instances held by
scoreDirector.getWorkingSolution().

3. Use the method ScoreDirector.lookUpWorkingObject() to translate and retrieve the working
solution’s instance of an object. This requires annotating a property of that class as the
@PlanningId.

4. A planning clone does not clone the problem facts, nor the problem fact collections. Therefore
the workingSolution and the bestSolution share the same problem fact instances and the same
problem fact list instances.

Any problem fact or problem fact list changed by a ProblemFactChange must be problem cloned
first (which can imply rerouting references in other problem facts and planning entities).

365

Otherwise, if the workingSolution and bestSolution are used in different threads (for example a
solver thread and a GUI event thread), a race condition can occur.

18.5.1.2. Cloning solutions to avoid race conditions in real-time planning

Many types of changes can leave a planning entity uninitialized, resulting in a partially initialized
solution. This is acceptable, provided the first solver phase can handle it.

All construction heuristics solver phases can handle a partially initialized solution, so it is
recommended to configure such a solver phase as the first phase.

The process occurs as follows:

1. The Solver stops.

2. Runs the ProblemFactChange.

3. restarts.

This is a warm start because its initial solution is the adjusted best solution of the previous run.

4. Each solver phase runs again.

This implies the construction heuristic runs again, but because little or no planning variables
are uninitialized (unless you have a nullable planning variable), it finishes much quicker than
in a cold start.

366

5. Each configured Termination resets (both in solver and phase configuration), but a previous call
to terminateEarly() is not undone.

Termination is not usually configured (except in daemon mode); instead,
Solver.terminateEarly() is called when the results are needed. Alternatively, configure a
Termination and use the daemon mode in combination with BestSolutionChangedEvent as
described in the following section.

18.5.2. Daemon: solve() does not return

In real-time planning, it is often useful to have a solver thread wait when it runs out of work, and
immediately resume solving a problem once new problem fact changes are added. Putting the
Solver in daemon mode has the following effects:

• If the Solver's Termination terminates, it does not return from solve(), but blocks its thread
instead (which frees up CPU power).

◦ Except for terminateEarly(), which does make it return from solve(), freeing up system
resources and allowing an application to shutdown gracefully.

◦ If a Solver starts with an empty planning entity collection, it waits in the blocked state
immediately.

• If a ProblemFactChange is added, it goes into the running state, applies the ProblemFactChange and
runs the Solver again.

To use the Solver in daemon mode:

1. Enable daemon mode on the Solver:

<solver>
 <daemon>true</daemon>
 ...
</solver>

Do not forget to call Solver.terminateEarly() when your application needs to
shutdown to avoid killing the solver thread unnaturally.

2. Subscribe to the BestSolutionChangedEvent to process new best solutions found by the solver
thread.

A BestSolutionChangedEvent does not guarantee that every ProblemFactChange has been processed
already, nor that the solution is initialized and feasible.

3. To ignore BestSolutionChangedEvents with such invalid solutions, do the following:

367

 public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) {
 if (event.isEveryProblemFactChangeProcessed()
 // Ignore infeasible (including uninitialized) solutions
 && event.getNewBestSolution().getScore().isFeasible()) {
 ...
 }
 }

4. Use Score.isSolutionInitialized() instead of Score.isFeasible() to only ignore uninitialized
solutions, but do accept infeasible solutions too.

368

Chapter 19. Integration

19.1. Overview
OptaPlanner’s input and output data (the planning problem and the best solution) are plain old
JavaBeans (POJOs), so integration with other Java technologies is straightforward. For example:

• To read a planning problem from the database (and store the best solution in it), annotate the
domain POJOs with JPA annotations.

• To read a planning problem from an XML file (and store the best solution in it), annotate the
domain POJOs with XStream or JAXB annotations.

• To expose the Solver as a REST Service that reads the planning problem and responds with the
best solution, annotate the domain POJOs with XStream, JAXB or Jackson annotations and hook
the Solver in Camel or RESTEasy.

19.2. Persistent storage

19.2.1. Database: JPA and Hibernate

Enrich domain POJOs (solution, entities and problem facts) with JPA annotations to store them in a
database by calling EntityManager.persist().

369

Do not confuse JPA’s @Entity annotation with OptaPlanner’s @PlanningEntity
annotation. They can appear both on the same class:

@PlanningEntity // OptaPlanner annotation
@Entity // JPA annotation
public class Talk {...}

Add a dependency to the optaplanner-persistence-jpa jar to take advantage of these extra
integration features:

19.2.1.1. JPA and Hibernate: persisting a Score

When a Score is persisted into a relational database, JPA and Hibernate will default to Java
serializing it to a BLOB column. This has several disadvantages:

• The Java serialization format of Score classes is currently not backwards compatible. Upgrading
to a newer OptaPlanner version can break reading an existing database.

• The score is not easily readable for a query executed in the database console. This is annoying
during development.

• The score cannot be used in a SQL or JPA-QL query to efficiently filter the results: for example to
query all infeasible schedules.

To avoid these issues, configure it to instead use INTEGER (or other) columns, by using the
appropriate *ScoreHibernateType for your Score type, for example for a HardSoftScore:

@PlanningSolution
@Entity
@TypeDef(defaultForType = HardSoftScore.class, typeClass = HardSoftScoreHibernateType
.class)
public class CloudBalance {

 @PlanningScore
 @Columns(columns = {@Column(name = "initScore"), @Column(name = "hardScore"),
@Column(name = "softScore")})
 protected HardSoftScore score;

 ...
}

Configure the same number of @Column annotations as the number of score levels
in the score plus one (for the initScore), otherwise Hibernate will fail fast because
a property mapping has the wrong number of columns.

In this case, the DDL will look like this:

370

CREATE TABLE CloudBalance(
 ...
 initScore INTEGER,
 hardScore INTEGER,
 softScore INTEGER
);

When using a BigDecimal based Score, specify the precision and scale of the columns to avoid silent
rounding:

@PlanningSolution
@Entity
@TypeDef(defaultForType = HardSoftBigDecimalScore.class, typeClass =
HardSoftBigDecimalScoreHibernateType.class)
public class CloudBalance{

 @PlanningScore
 @Columns(columns = {
 @Column(name = "initScore")
 @Column(name = "hardScore", precision = 10, scale = 5),
 @Column(name = "softScore", precision = 10, scale = 5)})
 protected HardSoftBigDecimalScore score;

 ...
}

In this case, the DDL will look like this:

CREATE TABLE CloudBalance(
 ...
 initScore INTEGER,
 hardScore DECIMAL(10, 5),
 softScore DECIMAL(10, 5)
);

When using any type of bendable Score, specify the hard and soft level sizes as parameters:

371

@PlanningSolution
@Entity
@TypeDef(defaultForType = BendableScore.class, typeClass = BendableScoreHibernateType
.class, parameters = {
 @Parameter(name = "hardLevelsSize", value = "3"),
 @Parameter(name = "softLevelsSize", value = "2")})
public class Schedule {

 @PlanningScore
 @Columns(columns = {
 @Column(name = "initScore")
 @Column(name = "hard0Score"),
 @Column(name = "hard1Score"),
 @Column(name = "hard2Score"),
 @Column(name = "soft0Score"),
 @Column(name = "soft1Score")})
 protected BendableScore score;

 ...
}

All this support is Hibernate specific because currently JPA 2.1’s converters do not support
converting to multiple columns.

19.2.1.2. JPA and Hibernate: planning cloning

In JPA and Hibernate, there is usually a @ManyToOne relationship from most problem fact classes to
the planning solution class. Therefore, the problem fact classes reference the planning solution
class, which implies that when the solution is planning cloned, they need to be cloned too. Use an
@DeepPlanningClone on each such problem fact class to enforce that:

@PlanningSolution // OptaPlanner annotation
@Entity // JPA annotation
public class Conference {

 @OneToMany(mappedBy="conference")
 private List<Room> roomList;

 ...
}

372

@DeepPlanningClone // OptaPlanner annotation: Force the default planning cloner to
planning clone this class too
@Entity // JPA annotation
public class Room {

 @ManyToOne
 private Conference conference; // Because of this reference, this problem fact
needs to be planning cloned too

}

Neglecting to do this can lead to persisting duplicate solutions, JPA exceptions or other side effects.

19.2.2. XML or JSON: XStream

Enrich domain POJOs (solution, entities and problem facts) with XStream annotations to serialize
them to/from XML or JSON.

Add a dependency to the optaplanner-persistence-xstream jar to take advantage of these extra
integration features:

19.2.2.1. XStream: marshalling a Score

When a Score is marshalled to XML or JSON by the default XStream configuration, it’s verbose and
ugly. To fix that, configure the appropriate ScoreXStreamConverter:

@PlanningSolution
@XStreamAlias("CloudBalance")
public class CloudBalance {

 @PlanningScore
 @XStreamConverter(HardSoftScoreXStreamConverter.class)
 private HardSoftScore score;

 ...
}

For example, this generates pretty XML:

<CloudBalance>
 ...
 <score>0hard/-200soft</score>
</CloudBalance>

The same applies for a bendable score:

373

@PlanningSolution
@XStreamAlias("Schedule")
public class Schedule {

 @PlanningScore
 @XStreamConverter(BendableScoreXStreamConverter.class)
 private BendableScore score;

 ...
}

For example, this generates:

<Schedule>
 ...
 <score>[0/0]hard/[-100/-20/-3]soft</score>
</Schedule>

When reading a bendable score from an XML element, the implied hardLevelsSize and
softLevelsSize must always be in sync with those in the solver.

19.2.3. XML or JSON: JAXB

Enrich domain POJOs (solution, entities and problem facts) with JAXB annotations to serialize them
to/from XML or JSON.

Add a dependency to the optaplanner-persistence-jaxb jar to take advantage of these extra
integration features:

19.2.3.1. JAXB: marshalling a Score

When a Score is marshalled to XML or JSON by the default JAXB configuration, it’s corrupted. To fix
that, configure the appropriate ScoreJaxbXmlAdapter:

@PlanningSolution
@XmlRootElement @XmlAccessorType(XmlAccessType.FIELD)
public class CloudBalance {

 @PlanningScore
 @XmlJavaTypeAdapter(HardSoftScoreJaxbXmlAdapter.class)
 private HardSoftScore score;

 ...
}

For example, this generates pretty XML:

374

<cloudBalance>
 ...
 <score>0hard/-200soft</score>
</cloudBalance>

The same applies for a bendable score:

@PlanningSolution
@XmlRootElement @XmlAccessorType(XmlAccessType.FIELD)
public class Schedule {

 @PlanningScore
 @XmlJavaTypeAdapter(BendableScoreJaxbXmlAdapter.class)
 private BendableScore score;

 ...
}

For example, with a hardLevelsSize of 2 and a softLevelsSize of 3, that will generate:

<schedule>
 ...
 <score>[0/0]hard/[-100/-20/-3]soft</score>
</schedule>

The hardLevelsSize and softLevelsSize implied, when reading a bendable score from an XML
element, must always be in sync with those in the solver.

19.2.4. JSON: Jackson

Enrich domain POJOs (solution, entities and problem facts) with Jackson annotations to serialize
them to/from JSON.

Add a dependency to the optaplanner-persistence-jackson jar and register
OptaPlannerJacksonModule:

ObjectMapper objectMapper = new ObjectMapper();
objectMapper.registerModule(OptaPlannerJacksonModule.createModule());

19.2.4.1. Jackson: marshalling a Score

When a Score is marshalled to/from JSON by the default Jackson configuration, it fails. The
OptaPlannerJacksonModule fixes that, by using HardSoftScoreJacksonJsonSerializer,
HardSoftScoreJacksonJsonDeserializer, etc.

375

@PlanningSolution
public class CloudBalance {

 @PlanningScore
 private HardSoftScore score;

 ...
}

For example, this generates:

{
 "score":"0hard/-200soft"
 ...
}

When reading a BendableScore, the hardLevelsSize and softLevelsSize implied in
the JSON element, must always be in sync with those defined in the @PlanningScore
annotation in the solution class. For example:

{
 "score":"[0/0]hard/[-100/-20/-3]soft"
 ...
}

This JSON implies the hardLevelsSize is 2 and the softLevelsSize is 3, which must
be in sync with the @PlanningScore annotation:

@PlanningSolution
public class Schedule {

 @PlanningScore(bendableHardLevelsSize = 2, bendableSoftLevelsSize =
3)
 private BendableScore score;

 ...
}

When a field is the Score supertype (instead of a specific type such as HardSoftScore), it uses
PolymorphicScoreJacksonJsonSerializer and PolymorphicScoreJacksonJsonDeserializer to record the
score type in JSON too, otherwise it would be impossible to deserialize it:

376

@PlanningSolution
public class CloudBalance {

 @PlanningScore
 private Score score;

 ...
}

For example, this generates:

{
 "score":{"HardSoftScore":"0hard/-200soft"}
 ...
}

19.2.5. JSON: JSON-B

Enrich domain POJOs (solution, entities and problem facts) with JSON-B annotations to serialize
them to/from JSON.

Add a dependency to the optaplanner-persistence-jsonb jar and use OptaPlannerJsonbConfig to
create a Jsonb instance:

JsonbConfig config = OptaPlannerJsonbConfig.createConfig();
Jsonb jsonb = JsonbBuilder.create(config);

19.2.5.1. JSON-B: marshalling a Score

When a Score is marshalled to/from JSON by the default JSON-B configuration, it fails. The
OptaPlannerJsonbConfig fixes that, by using adapters including BendableScoreJsonbAdapter,
HardSoftScoreJsonbAdapter, etc.

@PlanningSolution
public class CloudBalance {

 @PlanningScore
 private HardSoftScore score;

 ...
}

For example, this generates:

377

{"hardSoftScore":"0hard/-200soft"}

The same applies for a bendable score:

@PlanningSolution
public class CloudBalance {

 @PlanningScore
 private BendableScore score;

 ...
}

This generates:

{"bendableScore":"[0/0]hard/[-200/-20/0]soft"}

19.3. Quarkus
The Quarkus extension for OptaPlanner and its guide is coming soon.

19.4. Spring Boot
To use OptaPlanner on Spring Boot, add the optaplanner-spring-boot-starter dependency and read
the Spring guide Constraint solving AI with OptaPlanner.

DRL score calculation is currently incompatible with the dependency spring-boot-
devtools: none of the DRL rules will fire, due to ClassLoader issues.

These properties are supported in Spring’s application.properties:

optaplanner.solver-manager.parallel-solver-count

The number of solvers that run in parallel. This directly influences CPU consumption. Defaults to
AUTO.

optaplanner.solver-config-xml

A classpath resource to read the solver configuration XML. Defaults to solverConfig.xml. If this
property isn’t specified, that file is optional.

optaplanner.solver.environment-mode

Enable runtime assertions to detect common bugs in your implementation during development.

optaplanner.solver.daemon

Enable daemon mode. In daemon mode, non-early termination pauses the solver instead of
stopping it, until the next problem fact change arrives. This is often useful for real-time

378

planning. Defaults to false.

optaplanner.solver.move-thread-count

Enable multithreaded solving for a single problem, which increases CPU consumption. Defaults
to NONE. See multithreaded incremental solving.

optaplanner.solver.termination.spent-limit

How long the solver can run. For example: 30s is 30 seconds. 5m is 5 minutes. 2h is 2 hours. 1d is 1
day.

optaplanner.solver.termination.unimproved-spent-limit

How long the solver can run without finding a new best solution after finding a new best
solution. For example: 30s is 30 seconds. 5m is 5 minutes. 2h is 2 hours. 1d is 1 day.

optaplanner.solver.termination.best-score-limit

Terminates the solver when a specific or higher score has been reached. For example: 0hard/-
1000soft terminates when the best score changes from 0hard/-1200soft to 0hard/-900soft.
Wildcards are supported to replace numbers. For example: 0hard/*soft to terminate when any
feasible score is reached.

19.5. SOA and ESB

19.5.1. Camel and Karaf

Camel is an enterprise integration framework which includes support for OptaPlanner (starting
from Camel 2.13). It can expose a use case as a REST service, a SOAP service, a JMS service, …

Read the documentation for the camel-optaplanner component. That component works in Karaf
too.

19.6. Other environments

19.6.1. JBoss Modules, WildFly, and JBoss EAP

Because of JBoss Modules' ClassLoader magic, provide the ClassLoader of your classes during the
SolverFactory creation, so it can find the classpath resources (such as the solver config, score DRLs
and domain classes) in your jars.

It’s also recommended to plug in WildFly’s thread factory, especially with multithreaded solving.

19.6.1.1. Logging on WildFly and JBoss EAP

To get decent logging of the solver(s), create a file src/main/resources/jboss-log4j.xml (so it ends up
in the war as WEB-INF/classes/jboss-log4j.xml) with this content:

379

http://camel.apache.org/
http://camel.apache.org/optaplanner.html

<?xml version="1.0" encoding="UTF-8"?>
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" debug="false">

 <appender name="consoleAppender" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d{HH:mm:ss.SSS} %-5p [%t] %m%n"/>
 </layout>
 </appender>

 <logger name="org.optaplanner">
 <level value="debug"/>
 </logger>

 <root>
 <level value="warn" />
 <appender-ref ref="consoleAppender"/>
 </root>

</log4j:configuration>

19.6.1.2. Skinny WAR on WildFly and JBoss EAP

To deploy an OptaPlanner web application on WildFly, simply include the optaplanner dependency
jars in the war file’s WEB-INF/lib directory (just like any other dependency). However, in this
approach the war file can easily grow to several MB in size, which is fine for a one-time
deployment, but too heavyweight for frequent redeployments (especially over a slow network
connection).

The remedy is to use deliver the optaplanner jars in a JBoss module to WildFly and create a skinny
war. Let’s create a module called org.optaplanner:

1. Navigate to the directory ${WILDFLY_HOME}/modules/system/layers/base/. This directory contains
the JBoss modules of WildFly. Create directory structure org/optaplanner/main for our new
module.

a. Copy optaplanner-core-${version}.jar and all its direct and transitive dependency jars into
that new directory. Use "mvn dependency:tree" on each optaplanner artifact to discover all
dependencies.

b. Create the file module.xml in that new directory. Give it this content:

380

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.3" name="org.optaplanner">
 <resources>
 ...
 <resource-root path="kie-api-${version}.jar"/>
 ...
 <resource-root path="optaplanner-core-${version}.jar"/>
 ...
 <resource-root path="."/>
 </resources>
 <dependencies>
 <module name="javaee.api"/>
 </dependencies>
</module>

2. Navigate to the deployed war file.

a. Remove optaplanner-core-${version}.jar and all its direct and transitive dependency jars
from the WEB-INF/lib directory in the war file.

b. Create the file jboss-deployment-structure.xml in the WEB-INF/lib directory. Give it this
content:

<?xml version="1.0" encoding="UTF-8" ?>
<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.optaplanner" export="true"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

19.6.2. Java platform module system (Jigsaw)

When using OptaPlanner from code on the modulepath (Java 9 and higher), open your packages
that contain your domain objects, DRL files and solver configuration to all modules in your module-
info.java file:

module org.optaplanner.cloudbalancing {
 requires org.optaplanner.core;
 ...

 opens org.optaplanner.examples.cloudbalancing.domain; // Domain classes
 opens org.optaplanner.examples.cloudbalancing.solver; // DRL file and solver
configuration
 ...
}

381

Otherwise OptaPlanner can’t reach those classes or files, even if they are exported.

The package org.xmlpull.v1 is split between dependencies of XStream. A workaround is to patch
the xmlpull module with the xpp3_min-1.1.4c.jar artifact.

Since OptaPlanner has no module-info.java, it is required to add its java.scripting dependency
manually to the modulepath with this JVM argument:

--add-modules java.scripting

Drools and XStream require illegal reflective access to some internal Java packages. This can be
achieved with the following JVM arguments:

--add-opens java.base/java.lang=org.drools.core \
--add-opens java.base/java.util=xstream \
--add-opens java.base/java.lang.reflect=xstream \
--add-opens java.base/java.text=xstream \
--add-opens java.desktop/java.awt.font=xstream

19.6.3. OSGi

The optaplanner-core jar includes OSGi metadata in its MANIFEST.MF file to function properly in an
OSGi environment too. Furthermore, the maven artifact kie-karaf-features contains a features.xml
file that supports the OSGi-feature optaplanner-engine.

Because of the OSGi’s ClassLoader magic, provide the ClassLoader of your classes during the
SolverFactory creation, so it can find the classpath resources (such as the solver config, score DRLs
and domain classes) in your jars.

OptaPlanner does not require OSGi. It works perfectly fine in a normal Java
environment too.

19.6.4. Android

Android is not a complete JVM (because some JDK libraries are missing), but OptaPlanner works on
Android with easy Java or incremental Java score calculation. The Drools rule engine does not work
on Android yet, so Drools score calculation doesn’t work on Android and its dependencies need to
be excluded.

Workaround to use OptaPlanner on Android:

1. Add a dependency to the build.gradle file in your Android project to exclude org.drools and
xmlpull dependencies:

382

dependencies {
 ...
 compile('org.optaplanner:optaplanner-core:...') {
 exclude group: 'xmlpull'
 exclude group: 'org.drools'
 }
 ...
}

19.7. Integration with human planners (politics)
A good OptaPlanner implementation beats any good human planner for non-trivial datasets. Many
human planners fail to accept this, often because they feel threatened by an automated system.

But despite that, both can benefit if the human planner becomes the supervisor of OptaPlanner:

• The human planner defines, validates and tweaks the score function.

◦ The human planner tweaks the constraint weights of the constraint configuration in a UI, as
the business priorities change over time.

◦ When the business changes, the score function often needs to change too. The human
planner can notify the developers to add, change or remove score constraints.

• The human planner is always in control of OptaPlanner.

◦ As shown in the course scheduling example, the human planner can pin down one or more
planning variables to a specific planning value. Because they are immovable, OptaPlanner
does not change them: it optimizes the planning around the enforcements made by the
human. If the human planner pins down all planning variables, he/she sidelines
OptaPlanner completely.

◦ In a prototype implementation, the human planner occasionally uses pinning to intervene,
but as the implementation matures, this should become obsolete. The feature should be kept
available as a reassurance for the humans, and in the event that the business changes
dramatically before the score constraints are adjusted accordingly.

For this reason, it is recommended that the human planner is actively involved in your project.

383

19.8. Sizing hardware and software
Before sizing a OptaPlanner service, first understand the typical behaviour of a Solver.solve() call:

384

Understand these guidelines to decide the hardware for a OptaPlanner service:

• RAM memory: Provision plenty, but no need to provide more.

◦ The problem dataset, loaded before OptaPlanner is called, often consumes the most memory.
It depends on the problem scale.

▪ For example, in the Machine Reassignment example some datasets use over 1GB in
memory. But in most examples, they use just a few MB.

▪ If this is a problem, review the domain class structure: remove classes or fields that
OptaPlanner doesn’t need during solving.

▪ OptaPlanner usually has up to three solution instances: the internal working solution,
the best solution and the old best solution (when it’s being replaced). However, these are
all a planning clone of each other, so many problem fact instances are shared between
those solution instances.

◦ During solving, the memory is very volatile, because solving creates many short-lived
objects. The Garbage Collector deletes these in bulk and therefore needs some heap space as
a buffer.

◦ The maximum size of the JVM heap space can be in three states:

▪ Insufficient: An OutOfMemoryException is thrown (often because the Garbage Collector is
using more than 98% of the CPU time).

▪ Narrow: The heap buffer for those short-lived instances is too small, therefore the

385

Garbage Collector needs to run more than it would like to, which causes a performance
loss.

▪ Profiling shows that in the heap chart, the used heap space frequently touches the
max heap space during solving. It also shows that the Garbage Collector has a
significant CPU usage impact.

▪ Adding more heap space increases the score calculation speed.

▪ Plenty: There is enough heap space. The Garbage Collector is active, but its CPU usage is
low.

▪ Adding more heap space does not increase performance.

▪ Usually, this is around 300 to 500MB above the dataset size, regardless of the problem
scale (except with nearby selection and caching move selector, neither are used by
default).

• CPU power: More is better.

◦ Improving CPU speed directly increases the score calculation speed.

▪ If the CPU power is twice as fast, it takes half the time to find the same result. However,
this does not guarantee that it finds a better result in the same time, nor that it finds a
similar result for a problem twice as big in the same time.

▪ Increasing CPU power usually does not resolve scaling issues, because planning
problems scale exponentially. Power tweaking the solver configuration has far better
results for scaling issues than throwing hardware at it.

◦ During the solve() method, the CPU power will max out until it returns (except in daemon
mode or if your SolverEventListener writes the best solution to disk or the network).

• Number of CPU cores: one CPU core per active Solver, plus at least one one for the operating
system.

◦ So in a multitenant application, which has one Solver per tenant, this means one CPU core
per tenant, unless the number of solver threads is limited, as that limits the number of
tenants being solved in parallel.

◦ With Partitioned Search, presume one CPU core per partition (per active tenant), unless the
number of partition threads is limited.

▪ To reduce the number of used cores, it can be better to reduce the partition threads (so
solve some partitions sequentially) than to reduce the number of partitions.

◦ In use cases with many tenants (such as scheduling Software as a Service) or many
partitions, it might not be affordable to provision that many CPUs.

▪ Reduce the number of active Solvers at a time. For example: give each tenant only one
minute of machine time and use a ExecutorService with a fixed thread pool to queue
requests.

▪ Distribute the Solver runs across the day (or night). This is especially an opportunity in
SaaS that’s used across the globe, due to timezones: UK and India can use the same CPU
core when scheduling at night.

◦ The SolverManager will take care of the orchestration, especially in those underfunded
environments in which solvers (and partitions) are forced to share CPU cores or wait in line.

386

• I/O (network, disk, …): Not used during solving.

◦ OptaPlanner is not a web server: a solver thread does not block (unlike a servlet thread),
each one fully drains a CPU.

▪ A web server can handle 24 active servlets threads with eight cores without
performance loss, because most servlets threads are blocking on I/O.

▪ However, 24 active solver threads with eight cores will cause each solver’s score
calculation speed to be three times slower, causing a big performance loss.

◦ Note that calling any I/O during solving, for example a remote service in your score
calculation, causes a huge performance loss because it’s called thousands of times per
second, so it should complete in microseconds. So no good implementation does that.

Keep these guidelines in mind when selecting and configuring the software. See our blog archive
for the details of our experiments, which use our diverse set of examples. Your mileage may vary.

• Operating System

◦ No experimentally proven advice yet (but prefer Linux anyway).

• JDK

◦ Version: Java 7 can be between 10% and 25% faster than Java 6. But Java 8 however is
usually not significantly faster than Java 7.

◦ Garbage Collector: ParallelGC (the default in Java 8) can be potentially between 5% and 35%
faster than G1GC (the default in Java 9). Unlike web servers, OptaPlanner needs a GC focused
on throughput, not latency. Use -XX:+UseParallelGC to turn on ParallelGC.

• Logging can have a severe impact on performance.

◦ Debug logging org.drools can reduce performance by a factor of 7.

◦ Debug logging org.optaplanner can be between 0% and 15% slower than info logging. Trace
logging can be between 5% and 70% slower than info logging.

◦ Synchronous logging to a file has an additional significant impact for debug and trace
logging (but not for info logging).

• Avoid a cloud environment in which you share your CPU core(s) with other virtual machines or
containers. Performance (and therefore solution quality) can be unreliable when the available
CPU power varies greatly.

Keep in mind that the perfect hardware/software environment will probably not solve scaling
issues (even Moore’s law is too slow). There is no need to follow these guidelines to the letter.

387

https://www.optaplanner.org/blog/archive.html

Chapter 20. Design patterns

20.1. Design patterns introduction
OptaPlanner design patterns are generic reusable solutions to common challenges in the model or
architecture of projects that perform constraint solving. The design patterns in this section list and
solve common design challenges.

20.2. Domain Modeling Guidelines
Follow the guidelines listed in this section to create a well thought-out model that can contribute
significantly to the success of your planning.

1. Draw a class diagram of your domain model.

a. Make sure there are no duplications in your data model and that relationships between
objects are clearly defined.

b. Create sample instances for each class. For example, in the employee rostering Employee
class, create Ann, Bert, and Carl.

2. Determine which relationships (or fields) change during planning and color them orange.
One side of these relationships will become a planning variable later on. For example, in
employee rostering, the Shift to Employee relationship changes during planning, so it is orange.
However, other relationships, such as from Employee to Skill, are immutable during planning
because Optaplanner cannot assign an extra skill to an employee.

3. If there are multiple relationships (or fields), check for shadow variables. A shadow
variable changes during planning, but its value can be calculated based on one or more genuine
planning variables, without dispute. Color shadow relationships (or fields) purple.

Only one side of a bi-directional relationship can be a genuine planning
variable. The other side will become an inverse relation shadow variable later
on. Keep bi-directional relationships orange.

4. Check for chained planning variables. In a chained variable design, the focus is on deciding
the order of a set of planning entity instances instead of assigning them to a date and time.
However, a shadow variable can assign the date and time. A typical use case is vehicle routing.

5. If there is an orange many-to-many relationship, replace it with a one-to-many and a
many-to-one relationship to a new intermediate class.

Optaplanner does not currently support a @PlanningVariable annotation on a
collection.

For example, in the Employee Rostering starter application the ShiftAssignment class is the
many-to-many relationship between Shift and Employee. Shift contains every shift time that
needs to be filled with an employee.

388

6. Annotate a many-to-one relationship with a @PlanningEntity annotation. Usually the many
side of the relationship is the planning entity class that contains the planning variable. If the
relationship is bi-directional, both sides are a planning entity class but usually the many side
has the planning variable and the one side has the shadow variable. For example, in employee
rostering, the ShiftAssignment class has an @PlanningEntity annotation.

7. Make sure that the planning entity class has at least one problem property. A planning
entity class cannot consist of only planning variables or an ID and only planning variables.

a. Remove any surplus @PlanningVariable annotations so that they become problem properties.
Doing this significantly decreases the search space size and significantly increases solving
efficiency. For example, in employee rostering, the ShiftAssignment class should not annotate
both the Shift and Employee relationship with @PlanningVariable.

b. Make sure that when all planning variables have a value of null, the planning entity
instance is describable to the business people. Planning variables have a value of null when
the planning solution is uninitialized.

▪ A surrogate ID does not suffice as the required minimum of one problem property.

▪ There is no need to add a hard constraint to assure that two planning entities are
different. They are already different due to their problem properties.

▪ In some cases, multiple planning entity instances have the same set of problem
properties. In such cases, it can be useful to create an extra problem property to
distinguish them. For example, in employee rostering, the ShiftAssignment class has the
problem property Shift as well as the problem property indexInShift which is an int
class.

389

8. Choose the model in which the number of planning entities is fixed during planning. For
example, in the employee rostering, it is impossible to know in advance how many shifts each
employee will have before Optaplanner solves the model and the results can differ for each
solution found. On the other hand, the number of employees per shift is known in advance, so it
is better to make the Shift relationship a problem property and the Employee relationship a
planning variable as shown in the following examples.

In the following diagram, each row is a different example and shows the relationship in that
example’s data model. For the N Queens example, the Queen entity has a Row planning variable,
which stores objects of type row. Many Queens may point to one Row.

390

 Vehicle routing is different because it uses a chained planning variable.

20.3. Assigning time to planning entities
Dealing with time and dates in planning problems may be problematic because it is dependent on
the needs of your use case.

There are several representations of timestamps, dates, durations and periods in Java. Choose the
right representation type for your use case:

• java.util.Date (deprecated): a slow, error-prone way to represent timestamps. Do not use.

• java.time.LocalDateTime, LocalDate, DayOfWeek, Duration, Period, …: an accurate way to represent
and calculate with timestamps, dates, …

◦ Supports timezones and DST (Daylight Saving Time).

◦ Requires Java 8 or higher.

• int or long: Caches a timestamp as a simplified number of coarse-grained time units (such as
minutes) from the start of the global planning time window or the epoch.

◦ For example: a LocalDateTime of 1-JAN 08:00:00 becomes an int of 400 minutes. Similarly 1-
JAN 09:00:00 becomes 460 minutes.

◦ It often represents an extra field in a class, alongside the LocalDateTime field from which it

391

was calculated. The LocalDateTime is used for user visualization, but the int is used in the
score constraints.

◦ It is faster in calculations, which is especially useful in the TimeGrain pattern.

◦ Do not use if timezones or DST affect the score constraints.

There are also several designs for assigning a planning entity to a starting time (or date):

• If the starting time is fixed beforehand, it is not a planning variable (in that solver).

◦ For example, in the hospital bed planning example, the arrival day of each patient is fixed
beforehand.

◦ This is common in multi stage planning, when the starting time has been decided already in
an earlier planning stage.

• If the starting time is not fixed, it is a planning variable (genuine or shadow).

◦ If all planning entities have the same duration, use the Timeslot pattern.

▪ For example in course scheduling, all lectures take one hour. Therefore, each timeslot is
one hour.

▪ Even if the planning entities have different durations, but the same duration per type,
it’s often appropriate.

▪ For example in conference scheduling, breakout talks take one hour and lab talks
take 2 hours. But there’s an enumeration of the timeslots and each timeslot only
accepts one talk type.

◦ If the duration differs and time is rounded to a specific time granularity (for example 5
minutes) use the TimeGrain pattern.

▪ For example in meeting scheduling, all meetings start at 15 minute intervals. All
meetings take 15, 30, 45, 60, 90 or 120 minutes.

◦ If the duration differs and one task starts immediately after the previous task (assigned to
the same executor) finishes, use the Chained Through Time pattern.

▪ For example in time windowed vehicle routing, each vehicle departs immediately to the
next customer when the delivery for the previous customer finishes.

▪ Even if the next task does not always start immediately, but the gap is deterministic, it
applies.

▪ For example in vehicle routing, each driver departs immediately to the next
customer, unless it’s the first departure after noon, in which case there’s first a 1
hour lunch.

◦ If the employees need to decide the order of theirs tasks per day, week or SCRUM sprint
themselves, use the Time Bucket pattern.

▪ For example in elevator maintenance scheduling, a mechanic gets up to 40 hours worth
of tasks per week, but there’s no point in ordering them within 1 week because there’s
likely to be disruption from entrapments or other elevator outages.

Choose the right pattern depending on the use case:

392

393

20.3.1. Timeslot pattern: assign to a fixed-length timeslot

If all planning entities have the same duration (or can be inflated to the same duration), the
Timeslot pattern is useful. The planning entities are assigned to a timeslot rather than time. For
example in course timetabling, all lectures take one hour.

The timeslots can start at any time. For example, the timeslots start at 8:00, 9:00, 10:15 (after a 15-
minute break), 11:15, … They can even overlap, but that is unusual.

It is also usable if all planning entities can be inflated to the same duration. For example in exam
timetabling, some exams take 90 minutes and others 120 minutes, but all timeslots are 120 minutes.
When an exam of 90 minutes is assigned to a timeslot, for the remaining 30 minutes, its seats are
occupied too and cannot be used by another exam.

Usually there is a second planning variable, for example the room. In course timetabling, two
lectures are in conflict if they share the same room at the same timeslot. However, in exam
timetabling, that is allowed, if there is enough seating capacity in the room (although mixed exam
durations in the same room do inflict a soft score penalty).

20.3.2. TimeGrain pattern: assign to a starting TimeGrain

Assigning humans to start a meeting at four seconds after 9 o’clock is pointless because most
human activities have a time granularity of five minutes or 15 minutes. Therefore it is not
necessary to allow a planning entity to be assigned subsecond, second or even one minute accuracy.

394

The five minute or 15 minutes accuracy suffices. The TimeGrain pattern models such time
accuracy by partitioning time as time grains. For example in meeting scheduling, all meetings
start/end in hour, half hour, or 15-minute intervals before or after each hour, therefore the optimal
settings for time grains is 15 minutes.

Each planning entity is assigned to a start time grain. The end time grain is calculated by adding the
duration in grains to the starting time grain. Overlap of two entities is determined by comparing
their start and end time grains.

This pattern also works well with a coarser time granularity (such as days, half days, hours, …).
With a finer time granularity (such as seconds, milliseconds, …) and a long time window, the value
range (and therefore the search space) can become too high, which reduces efficiency and
scalability. However, such a solution is not impossible, as shown in cheap time scheduling.

20.3.3. Chained through time pattern: assign in a chain that determines
starting time

If a person or a machine continuously works on one task at a time in sequence, which means
starting a task when the previous is finished (or with a deterministic delay), the Chained Through
Time pattern is useful. For example, in the vehicle routing with time windows example, a vehicle
drives from customer to customer (thus it handles one customer at a time).

In this pattern, the planning entities are chained. The anchor determines the starting time of its
first planning entity. The second entity’s starting time is calculated based on the starting time and
duration of the first entity. For example, in task assignment, Beth (the anchor) starts working at
8:00, thus her first task starts at 8:00. It lasts 52 mins, therefore her second task starts at 8:52. The
starting time of an entity is usually a shadow variable.

An anchor has only one chain. Although it is possible to split up the anchor into two separate
anchors, for example split up Beth into Beth’s left hand and Beth’s right hand (because she can do
two tasks at the same time), this model makes pooling resources difficult. Consequently, using this
model in the exam scheduling example to allow two or more exams to use the same room at the
same time is problematic.

Between planning entities, there are three ways to create gaps:

• No gaps: This is common when the anchor is a machine. For example, a build server always
starts the next job when the previous finishes, without a break.

• Only deterministic gaps: This is common for humans. For example, any task that crosses the
10:00 barrier gets an extra 15 minutes duration so the human can take a break.

◦ A deterministic gap can be subjected to complex business logic. For example in vehicle
routing, a cross-continent truck driver needs to rest 15 minutes after two hours of driving
(which may also occur during loading or unloading time at a customer location) and also
needs to rest 10 hours after 14 hours of work.

• Planning variable gaps: This is uncommon, because that extra planning variable reduces
efficiency and scalability, (besides impacting the search space too).

395

20.3.3.1. Chained through time: automatic collapse

In some use case there is an overhead time for certain tasks, which can be shared by multiple tasks,
of those are consecutively scheduled. Basically, the solver receives a discount if it combines those
tasks.

For example when delivering pizza to two different customers, a food delivery service combines
both deliveries into a single trip, if those two customers ordered from the same restaurant around
the same time and live in the same part of the city.

Implement the automatic collapse in the customer variable listener that calculates the start and end
times of each task.

20.3.3.2. Chained through time: automatic delay until last

Some tasks require more than one person to execute. In such cases, both employees need to be
there at the same time, before the work can start.

For example when assembling furniture, assembling a bed is a two-person job.

396

Implement the automatic delay in the customer variable listener that calculates the arrival, start
and end times of each task. Separate the arrival time from the start time. Additionally, add loop
detection to avoid an infinite loop:

397

20.3.4. Time bucket pattern: assign to a capacitated bucket per time period

In this pattern, the time of each employee is divided into buckets. For example 1 bucket per week.
Each bucket has a capacity, depending on the FTE (Full Time Equivalent), holidays and the
approved vacation of the employee. For example, a bucket usually has 40 hours for a full time
employee and 20 hours for a half time employee but only 8 hours on a specific week if the
employee takes vacation the rest of that week.

Each task is assigned to a bucket, which determines the employee and the coarse-grained time
period for working on it. The tasks within one bucket are not ordered: it’s up to the employee to
decide the order. This gives the employee more autonomy, but makes it harder to do certain
optimization, such as minimize travel time between task locations.

20.4. Multi-stage Planning
For practical or organizational reasons (such as Conway’s law), complex planning problems are
often broken down in multiple stages. A typical example is train scheduling, where one department
decides where and when a train will arrive or depart, and another department assigns the
operators to the actual train cars/locomotives.

Each stage has its own solver configuration (and therefore its own SolverFactory). Do not confuse it
with multi-phase solving which uses a one-solver configuration.

398

Similarly to Partitioned Search, multi-stage planning leads to suboptimal results. Nevertheless, it
may be beneficial in order to simplify the maintenance, ownership, and help to start a project.

20.5. Cloud architecture patterns
There are two common usage patterns of OptaPlanner in the cloud:

• Batch planning: Typically runs at night for hours to solve each tenant’s dataset and deliver
each schedule for the upcoming day(s) or week(s). Only the final best solution is sent back to the
client. This is a good fit for a serverless cloud architecture.

• Real-time planning: Typically runs during the day, to handle unexpected problem changes as
they occur in real-time and sends best solutions as they are discovered to the client.

399

400

Chapter 21. Development

21.1. Methodology overview
The diagram below explains the overall structure of the OptaPlanner source code:

In the diagram above, it’s important to understand the clear separation between the configuration
and runtime classes.

The development philosophy includes:

• Reuse: The examples are reused as integration tests, stress tests and demos. The documentation
images are reused as slides.

• Consistent terminology: Each example has a class App (executable class) and Panel (swing UI).

• Consistent structure: Each example has the same packages: domain, persistence, app, solver and
swingui.

• Real world usefulness: Every feature is used in an example. Most examples are real world use
cases with real world constraints, often with real world data.

• Automated testing: There are unit tests, integration tests, performance regressions tests and
stress tests. The test coverage is high.

• Fail fast with an understandable error message: Invalid states are checked as early as

401

possible.

21.2. Development guidelines

21.2.1. Fail fast

There are several levels of fail fast, from better to worse:

1. Fail Fast at compile time. For example: Don’t accept an Object as a parameter if it needs to be a
String or an Integer.

2. Fail Fast at startup time. For example: if the configuration parameter needs to be a positive int
and it’s negative, fail fast

3. Fail Fast at runtime. For example: if the request needs to contain a double between 0.0 and 1.0
and it’s bigger than 1.0, fail fast.

4. Fail Fast at runtime in assertion mode if the detection performance cost is high. For example:
If, after every low level iteration, the variable A needs to be equal to the square root of B, check
it if and only if an assert flag is set to true (usually controlled by the EnvironmentMode).

21.2.2. Exception messages

1. The Exception message must include the name and state of each relevant variable. For example:

if (fooSize < 0) {
 throw new IllegalArgumentException("The fooSize (" + fooSize + ") of bar (" +
this + ") must be positive.");
}

Notice that the output clearly explains what’s wrong:

Exception in thread "main" java.lang.IllegalArgumentException: The fooSize (-5) of
bar (myBar) must be positive.
 at ...

2. Whenever possible, the Exception message must include context.

3. Whenever the fix is not obvious, the Exception message should include advice. Advice normally
starts with the word maybe on a new line:

Exception in thread "main" java.lang.IllegalStateException: The
valueRangeDescriptor (fooRange) is nullable, but not countable (false).
Maybe the member (getFooRange) should return CountableValueRange.
 at ...

The word maybe is to indicate that the advice is not guaranteed to be right in all cases.

402

21.2.3. Generics

1. The @PlanningSolution class is often passed as a generic type parameter to subsystems.

2. The @PlanningEntity class(es) are rarely passed as a generic type parameter because there could
be multiple planning entities.

21.2.4. Lifecycle

One of the biggest challenges in multi-algorithm implementations (such as OptaPlanner) is the
lifecycle management of internal subsystems. These guidelines avoid lifecycle complexity:

1. The subsystems are called in the same order in *Started() and *Ended methods.

a. This avoids cyclic subsystem dependencies.

2. The *Scope class’s fields are filled in piecemeal by the subsystems as the algorithms discover
more information about its current scope subject.

a. Therefore, a *Scope has mutable fields. It’s not an Event.

b. A subsystem can only depend on scope information provided by an earlier subsystem.

3. Global variables are sorted:

a. First by volatility

b. Then by initialization time

403

	OptaPlanner User Guide
	Table of Contents
	Chapter 1. OptaPlanner Introduction
	1.1. What is OptaPlanner?
	1.2. What is a planning problem?
	1.2.1. A planning problem is NP-complete or NP-hard
	1.2.2. A planning problem has (hard and soft) constraints
	1.2.3. A planning problem has a huge search space

	1.3. Requirements
	1.4. Governance
	1.4.1. Status of OptaPlanner
	1.4.2. Release notes
	1.4.3. Backwards compatibility
	1.4.4. Community and support
	1.4.5. Relationship with Drools and jBPM

	1.5. Download and run the examples
	1.5.1. Get the release ZIP and run the examples
	1.5.2. Run the examples in an IDE (IntelliJ, Eclipse, NetBeans)
	1.5.3. Use OptaPlanner with Maven, Gradle, Ivy, Buildr, or ANT
	1.5.4. Build OptaPlanner from source

	Chapter 2. Getting started: a cloud balancing demonstration
	2.1. Cloud balancing tutorial
	2.1.1. Problem description
	2.1.2. Problem size

	2.2. Using the domain model
	2.2.1. Domain model design
	2.2.2. Domain model implementation

	2.3. Run the cloud balancing Hello World
	2.4. Solver configuration
	2.5. Score configuration
	2.5.1. Easy Java score configuration
	2.5.2. Drools score configuration

	2.6. Beyond this tutorial

	Chapter 3. Use cases and examples
	3.1. Examples overview
	3.2. N queens
	3.2.1. Problem description
	3.2.2. Problem size
	3.2.3. Domain model

	3.3. Cloud balancing
	3.4. Traveling salesman (TSP - traveling salesman problem)
	3.4.1. Problem description
	3.4.2. Problem size
	3.4.3. Problem difficulty

	3.5. Dinner party
	3.5.1. Problem description
	3.5.2. Problem size

	3.6. Tennis club scheduling
	3.6.1. Problem description
	3.6.2. Problem size
	3.6.3. Domain model

	3.7. Meeting scheduling
	3.7.1. Problem description
	3.7.2. Problem size

	3.8. Course timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling)
	3.8.1. Problem description
	3.8.2. Problem size
	3.8.3. Domain model

	3.9. Machine reassignment (Google ROADEF 2012)
	3.9.1. Problem description
	3.9.2. Value proposition
	3.9.3. Problem size
	3.9.4. Domain model

	3.10. Vehicle routing
	3.10.1. Problem description
	3.10.2. Value proposition
	3.10.3. Problem size
	3.10.4. Domain model

	3.11. Project job scheduling
	3.11.1. Problem description
	3.11.2. Problem size

	3.12. Hospital bed planning (PAS - Patient Admission Scheduling)
	3.12.1. Problem description
	3.12.2. Problem size
	3.12.3. Domain model

	3.13. Task assigning
	3.13.1. Problem description
	3.13.2. Value proposition
	3.13.3. Problem size
	3.13.4. Domain model

	3.14. Exam timetabling (ITC 2007 track 1 - Examination)
	3.14.1. Problem description
	3.14.2. Problem size
	3.14.3. Domain model

	3.15. Nurse rostering (INRC 2010)
	3.15.1. Problem description
	3.15.2. Value proposition
	3.15.3. Problem size
	3.15.4. Domain model

	3.16. Traveling tournament problem (TTP)
	3.16.1. Problem description
	3.16.2. Problem size

	3.17. Cheap time scheduling
	3.17.1. Problem description
	3.17.2. Problem size

	3.18. Investment asset class allocation (portfolio optimization)
	3.18.1. Problem description
	3.18.2. Problem size

	3.19. Conference scheduling
	3.19.1. Problem description
	3.19.2. Value proposition
	3.19.3. Problem size
	3.19.4. Architecture
	3.19.5. Domain model
	3.19.6. Search space

	3.20. Rock tour
	3.20.1. Problem description
	3.20.2. Problem size

	3.21. Flight crew scheduling
	3.21.1. Problem description
	3.21.2. Problem size

	Chapter 4. OptaPlanner configuration
	4.1. Overview
	4.2. Solver configuration
	4.2.1. Solver configuration by XML
	4.2.2. Solver configuration by Java API
	4.2.3. Annotations configuration
	4.2.4. Custom properties configuration

	4.3. Model a planning problem
	4.3.1. Is this class a problem fact or planning entity?
	4.3.2. Problem fact
	4.3.3. Planning entity
	4.3.4. Planning variable (genuine)
	4.3.5. Planning value and planning value range
	4.3.6. Planning problem and planning solution

	4.4. Use the Solver
	4.4.1. The Solver interface
	4.4.2. Solving a problem
	4.4.3. Environment mode: are there bugs in my code?
	4.4.4. Logging level: what is the Solver doing?
	4.4.5. Random number generator

	4.5. SolverManager
	4.5.1. Solve batch problems
	4.5.2. Solve and listen to show progress to the end-user

	Chapter 5. Score calculation
	5.1. Score terminology
	5.1.1. What is a score?
	5.1.2. Formalize the business constraints
	5.1.3. Score constraint signum (positive or negative)
	5.1.4. Score constraint weight
	5.1.5. Score constraint level (hard, soft, …)
	5.1.6. Pareto scoring (AKA multi-objective optimization scoring)
	5.1.7. Combining score techniques
	5.1.8. Score interface
	5.1.9. Avoid floating point numbers in score calculation

	5.2. Choose a score type
	5.2.1. SimpleScore
	5.2.2. HardSoftScore (Recommended)
	5.2.3. HardMediumSoftScore
	5.2.4. BendableScore
	5.2.5. Implementing a custom score

	5.3. Calculate the Score
	5.3.1. Score calculation types
	5.3.2. Easy Java score calculation
	5.3.3. Incremental Java score calculation
	5.3.4. InitializingScoreTrend
	5.3.5. Invalid score detection

	5.4. Score calculation performance tricks
	5.4.1. Overview
	5.4.2. Score calculation speed
	5.4.3. Incremental score calculation (with deltas)
	5.4.4. Avoid calling remote services during score calculation
	5.4.5. Pointless constraints
	5.4.6. Built-in hard constraint
	5.4.7. Other score calculation performance tricks
	5.4.8. Score trap
	5.4.9. stepLimit benchmark
	5.4.10. Fairness score constraints

	5.5. Constraint configuration: adjust constraint weights dynamically
	5.5.1. Create a constraint configuration
	5.5.2. Add a constraint weight for each constraint

	5.6. Explaining the score: which constraints are broken?
	5.6.1. Using score calculation outside the Solver
	5.6.2. Constraint match total: break down the score by constraint
	5.6.3. Indictment heat map: visualize the hot planning entities

	5.7. Testing score constraints with JUnit

	Chapter 6. Constraint streams score calculation
	6.1. Introduction
	6.2. Creating a constraint stream
	6.3. Constraint stream cardinality
	6.4. Building blocks
	6.4.1. Penalties and rewards
	6.4.2. Filtering
	6.4.3. Joining
	6.4.4. Grouping and collectors
	6.4.5. Conditional propagation

	6.5. Variant implementation types

	Chapter 7. Drools score calculation
	7.1. Overview
	7.2. Drools score rules configuration
	7.2.1. A scoreDrl resource on the classpath
	7.2.2. A scoreDrlFile element
	7.2.3. A ksessionName in a KJAR from a Maven repository

	7.3. Implementing a score rule
	7.4. Weighing score rules

	Chapter 8. Shadow variable
	8.1. Introduction
	8.2. Bi-directional variable (inverse relation shadow variable)
	8.3. Anchor shadow variable
	8.4. Custom VariableListener
	8.5. VariableListener triggering order

	Chapter 9. Optimization algorithms
	9.1. Search space size in the real world
	9.2. Does OptaPlanner find the optimal solution?
	9.3. Architecture overview
	9.4. Optimization algorithms overview
	9.5. Which optimization algorithms should I use?
	9.6. Power tweaking or default parameter values
	9.7. Solver phase
	9.8. Scope overview
	9.9. Termination
	9.9.1. Time spent termination
	9.9.2. Unimproved time spent termination
	9.9.3. BestScoreTermination
	9.9.4. BestScoreFeasibleTermination
	9.9.5. StepCountTermination
	9.9.6. UnimprovedStepCountTermination
	9.9.7. ScoreCalculationCountTermination
	9.9.8. Combining multiple terminations
	9.9.9. Asynchronous termination from another thread

	9.10. SolverEventListener
	9.11. Custom solver phase
	9.12. No change solver phase
	9.13. Multithreaded solving
	9.13.1. @PlanningId
	9.13.2. Custom thread factory (WildFly, Android, GAE, …)
	9.13.3. Multithreaded incremental solving

	Chapter 10. Move and neighborhood selection
	10.1. Move and neighborhood introduction
	10.1.1. What is a Move?
	10.1.2. What is a MoveSelector?
	10.1.3. Subselecting of entities, values, and other moves

	10.2. Generic MoveSelectors
	10.2.1. Generic MoveSelectors overview
	10.2.2. ChangeMoveSelector
	10.2.3. SwapMoveSelector
	10.2.4. Pillar-based move selectors
	10.2.5. Move selectors for chained variables

	10.3. Combining multiple MoveSelectors
	10.3.1. unionMoveSelector
	10.3.2. cartesianProductMoveSelector

	10.4. EntitySelector
	10.5. ValueSelector
	10.6. General Selector features
	10.6.1. CacheType: create moves ahead of time or just in time
	10.6.2. SelectionOrder: original, sorted, random, shuffled, or probabilistic
	10.6.3. Recommended combinations of CacheType and SelectionOrder
	10.6.4. Filtered selection
	10.6.5. Sorted selection
	10.6.6. Probabilistic selection
	10.6.7. Limited selection
	10.6.8. Mimic selection (record/replay)
	10.6.9. Nearby selection

	10.7. Custom moves
	10.7.1. Which move types might be missing in my implementation?
	10.7.2. Custom moves introduction
	10.7.3. The Move interface
	10.7.4. Generating custom moves

	Chapter 11. Exhaustive search
	11.1. Overview
	11.2. Brute force
	11.2.1. Algorithm description
	11.2.2. Configuration

	11.3. Branch and bound
	11.3.1. Algorithm description
	11.3.2. Configuration

	11.4. Scalability of exhaustive search

	Chapter 12. Construction heuristics
	12.1. Overview
	12.2. First fit
	12.2.1. Algorithm description
	12.2.2. Configuration

	12.3. First fit decreasing
	12.3.1. Algorithm description
	12.3.2. Configuration

	12.4. Weakest fit
	12.4.1. Algorithm description
	12.4.2. Configuration

	12.5. Weakest fit decreasing
	12.5.1. Algorithm description
	12.5.2. Configuration

	12.6. Strongest fit
	12.6.1. Algorithm description
	12.6.2. Configuration

	12.7. Strongest fit decreasing
	12.7.1. Algorithm description
	12.7.2. Configuration

	12.8. Allocate entity from queue
	12.8.1. Algorithm description
	12.8.2. Configuration
	12.8.3. Multiple entity classes
	12.8.4. Pick early type

	12.9. Allocate to value from queue
	12.9.1. Algorithm description
	12.9.2. Configuration

	12.10. Cheapest insertion
	12.10.1. Algorithm description
	12.10.2. Configuration

	12.11. Regret insertion
	12.11.1. Algorithm description
	12.11.2. Configuration

	12.12. Allocate from pool
	12.12.1. Algorithm description
	12.12.2. Configuration

	12.13. Scaling construction heuristics
	12.13.1. InitializingScoreTrend shortcuts
	12.13.2. Scaling multiple planning variables in construction heuristics
	12.13.3. Other scaling techniques in construction heuristics

	Chapter 13. Local search
	13.1. Overview
	13.2. Local search concepts
	13.2.1. Step by step
	13.2.2. Decide the next step
	13.2.3. Acceptor
	13.2.4. Forager

	13.3. Hill climbing (simple local search)
	13.3.1. Algorithm description
	13.3.2. Stuck in local optima
	13.3.3. Configuration

	13.4. Tabu search
	13.4.1. Algorithm description
	13.4.2. Configuration

	13.5. Simulated annealing
	13.5.1. Algorithm description
	13.5.2. Configuration

	13.6. Late acceptance
	13.6.1. Algorithm description
	13.6.2. Configuration

	13.7. Great Deluge
	13.7.1. Algorithm Description
	13.7.2. Configuration

	13.8. Step counting hill climbing
	13.8.1. Algorithm description
	13.8.2. Configuration

	13.9. Strategic oscillation
	13.9.1. Algorithm description
	13.9.2. Configuration

	13.10. Variable neighborhood descent
	13.10.1. Algorithm description
	13.10.2. Configuration

	13.11. Using a custom Termination, MoveSelector, EntitySelector, ValueSelector, or Acceptor

	Chapter 14. Evolutionary algorithms
	14.1. Overview
	14.2. Evolutionary strategies
	14.3. Genetic algorithms

	Chapter 15. Hyperheuristics
	15.1. Overview

	Chapter 16. Partitioned search
	16.1. Algorithm description
	16.2. Configuration
	16.3. Partitioning a solution
	16.3.1. Custom SolutionPartitioner

	16.4. Runnable part thread limit

	Chapter 17. Benchmarking and tweaking
	17.1. Find the best solver configuration
	17.2. Benchmark configuration
	17.2.1. Add a dependency on optaplanner-benchmark
	17.2.2. Run a simple benchmark
	17.2.3. Configure and run an advanced benchmark
	17.2.4. SolutionFileIO: input and output of solution files
	17.2.5. Warming up the HotSpot compiler
	17.2.6. Benchmark blueprint: a predefined configuration
	17.2.7. Write the output solution of benchmark runs
	17.2.8. Benchmark logging

	17.3. Benchmark report
	17.3.1. HTML report
	17.3.2. Ranking the solvers

	17.4. Summary statistics
	17.4.1. Best score summary (graph and table)
	17.4.2. Best score scalability summary (graph)
	17.4.3. Best score distribution summary (graph)
	17.4.4. Winning score difference summary (graph And table)
	17.4.5. Worst score difference percentage (ROI) summary (graph And table)
	17.4.6. Score calculation speed summary (graph And table)
	17.4.7. Time spent summary (graph And table)
	17.4.8. Time spent scalability summary (graph)
	17.4.9. Best score per time spent summary (graph)

	17.5. Statistic per dataset (graph and CSV)
	17.5.1. Enable a problem statistic
	17.5.2. Best score over time statistic (graph and CSV)
	17.5.3. Step score over time statistic (graph and CSV)
	17.5.4. Score calculation speed over time statistic (graph and CSV)
	17.5.5. Best solution mutation over time statistic (graph and CSV)
	17.5.6. Move count per step statistic (graph and CSV)
	17.5.7. Memory use statistic (graph and CSV)

	17.6. Statistic per single benchmark (graph and CSV)
	17.6.1. Enable a single statistic
	17.6.2. Constraint match total best score over time statistic (graph and CSV)
	17.6.3. Constraint match total step score over time statistic (graph and CSV)
	17.6.4. Picked move type best score diff over time statistic (graph and CSV)
	17.6.5. Picked move type step score diff over time statistic (graph and CSV)

	17.7. Advanced benchmarking
	17.7.1. Benchmarking performance tricks
	17.7.2. Statistical benchmarking
	17.7.3. Template-based benchmarking and matrix benchmarking
	17.7.4. Benchmark report aggregation

	Chapter 18. Repeated planning
	18.1. Introduction to repeated planning
	18.2. Backup planning
	18.3. Overconstrained planning
	18.3.1. Overconstrained planning with nullable variables
	18.3.2. Overconstrained planning with virtual values

	18.4. Continuous planning (windowed planning)
	18.4.1. Immovable planning entities
	18.4.2. Nonvolatile replanning to minimize disruption (semi-movable planning entities)

	18.5. Real-time planning
	18.5.1. ProblemFactChange
	18.5.2. Daemon: solve() does not return

	Chapter 19. Integration
	19.1. Overview
	19.2. Persistent storage
	19.2.1. Database: JPA and Hibernate
	19.2.2. XML or JSON: XStream
	19.2.3. XML or JSON: JAXB
	19.2.4. JSON: Jackson
	19.2.5. JSON: JSON-B

	19.3. Quarkus
	19.4. Spring Boot
	19.5. SOA and ESB
	19.5.1. Camel and Karaf

	19.6. Other environments
	19.6.1. JBoss Modules, WildFly, and JBoss EAP
	19.6.2. Java platform module system (Jigsaw)
	19.6.3. OSGi
	19.6.4. Android

	19.7. Integration with human planners (politics)
	19.8. Sizing hardware and software

	Chapter 20. Design patterns
	20.1. Design patterns introduction
	20.2. Domain Modeling Guidelines
	20.3. Assigning time to planning entities
	20.3.1. Timeslot pattern: assign to a fixed-length timeslot
	20.3.2. TimeGrain pattern: assign to a starting TimeGrain
	20.3.3. Chained through time pattern: assign in a chain that determines starting time
	20.3.4. Time bucket pattern: assign to a capacitated bucket per time period

	20.4. Multi-stage Planning
	20.5. Cloud architecture patterns

	Chapter 21. Development
	21.1. Methodology overview
	21.2. Development guidelines
	21.2.1. Fail fast
	21.2.2. Exception messages
	21.2.3. Generics
	21.2.4. Lifecycle

