OptaWeb Employee Rostering User
Guide

The OptaPlanner Team

Version 8.13.0.Final

Table of Contents

1. OptaWeb Employee Rostering Introduction
1.1. What is OptaWeb Employee Rostering?
1.2. Build and Run the Application
1.3. System Properties

2. Architecture

3. Project Structure
3.1. Domain Model
3.2. Constraints

3.2.1. Constraint definition

4. Features in OptaWeb Employee Rostering
4.1. Test the JPA Database with H2
4.2. Test the REST API

g1 U1 U1 U1 N R R

_ R
[N N

Chapter 1. OptaWeb Employee Rostering
Introduction

1.1. What is OptaWeb Employee Rostering?

Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). One such planning problem is
employee shift rostering: assigning shifts to employees. OptaWeb is a web application and REST
service that solves employee shift rostering problems using the OptaPlanner engine.

1.2. Build and Run the Application

To build the project with Maven, run the following command in the project’s root directory:
mvn clean install -DskipTests
After building the project, run the application with:

java -jar optaweb-employee-rostering-standalone/target/optaweb-employee-rostering-
standalone-*-exec.jar

Then open http://localhost:8080/ to see the web application.

Alternatively, run npm start in the optaweb-employee-rostering-frontend directory to start the
frontend in one terminal, and run mvn quarkus:dev in the optaweb-employee-rostering-backend
directory to start the backend in another terminal.

To run on another port, use -Dquarkus.http.port=---:

java -Dquarkus.http.port=18080 -jar optaweb-employee-rostering-
standalone/target/quarkus-app/quarkus-run.jar

1.3. System Properties

These system properties can overwrite default properties of the application, for example, by
passing -Doptaweb.generator.zoneId="America/New_York" to Quarkus. These system properties might
also be exposed as OpenShift template parameters.

* optaweb.generator.timeZoneld: The time zone ID for the automatically generated tenants. For
example America/New_York. This defaults to the system default Zone ID.

* optaweb.generator.initial.data: What data to initially put in the database. Supported values
are: EMPTY (no data) and DEMO_DATA (several tenants of various sizes). This defaults to DEMO_DATA

https://www.optaplanner.org
http://localhost:8080/

Chapter 2. Architecture

OptaWeb Employee Rostering Architecture

Use the powerful REST interface or the user friendly web interface.

Browser
Your middleware < L ‘N . - Reacts
~ 7 |
| Swagger |
| REST service]
Quarkus RESTEasy
OptaPlanner&
N\
5 ®] QUARKUS| Quarkus Panache («Hiserinr)

o@ Relational database

OptaWeb Employee Rostering Class Diagram

| Skill |
| name | _
* * ShiftTemplate
startDayOffset
« | requiredSkillSet) startTime
Spot x endD_ayOfrset
name endTime
7 * Shift
startDateTime
. endDateTime
+ | skillProficiencySet

Employee
name

employee

*

Solving with OptaPlanner

OptaPlanner automatically assigns the shifts, according to our constraints.

Mon | Tue | Wed
6 1 22 8 w = & 14 2
1 L 1 1 1 1 1 1 1
&
: . * Mon | Tue | Wed
= [y 6 14 2| & 14 22| B 14 2
1 1 1 1 1 | l 1 1
[+ [+
f_! '_I [= [=]
‘_', ‘_l =] -] _‘;1-

Problem OptaPlanner Solution

Chapter 3. Project Structure

The project is structured in the following folders:
* optaweb-employee-rostering-backend core planning domain model and backend REST api
implemented with Quarkus
* optaweb-employee-rostering-benchmark solution benchmark
* optaweb-employee-rostering-distribution assembly logic for the deployment assets
* optaweb-employee-rostering-docs this documentation

* optaweb-employee-rostering-frontend user interface implemented with React]S

3.1. Domain Model

The domain model is the most important piece of a project based on OptaPlanner. A careful design
simplifies the constraint definition. The classes of the domain model are placed in the optaweb-
employee-rostering-backend module.

The most important classes to understand the domain model are:

 Shift is the planning entity, where is the defined the relationship with the planning variable
employee. Other important fields: spot, rotationEmployee, startDateTime, endDateTime.

* Employee is the planning variable, it’s identified by the name and has a set of skills
(skillProficiencySet).

* Roster is the planning solution, employeelist is the list of employees (the range of values that
can be assigned to the planning variable), the field score holds the score (3 levels: hard, medium,
soft), the other problem facts are: skilllList, spotlList, employeeAvailabilityList,
rosterConstraintConfiquration, rosterState, shiftList.

3.2. Constraints

The constraints are defined in the optaweb-employee-rostering-backend module, with the
implementation of the backend REST service.

* The solver configuration file: optaweb-employee-rostering-
backend/src/main/resources/org/optaweb/employeerostering/service/solver/employeeRosteringSo
lverConfig.xml

e The constraints definition file: optaweb-employee-rostering-
backend/src/main/resources/org/optaweb/employeerostering/service/solver/employeeRosteringSc
oreRules.drl

3.2.1. Constraint definition

The constraints are defined using the DRL language. See: Implementing a score rule.

https://docs.optaplanner.org/latestFinal/optaplanner-docs/html_single/index.html#implementingAScoreRule

3.2.1.1. Hard Constraints

Required skill for a shift

rule "Required skill for a shift"
when
Shift(
employee != null,
IgetEmployee().hasSkills(getSpot().getRequiredSkillSet()))
then
scoreHolder.addHardConstraintMatch(kcontext, -100);
end

Condition: there is a shift with an assigned employee that has NOT the skill set required by the spot.
Action: the hard score is decreased by 100 units.

Unavailable time slot for an employee

rule "Unavailable time slot for an employee"
when
EmployeeAvailability(
state == EmployeeAvailabilityState.UNAVAILABLE,
$e : employee,
$startDateTime : startDateTime,
$endDateTime : endDateTime)
Shift(
employee == $e,
DateTimeUtils.doTimeslotsIntersect($startDateTime,$endDateTime,
startDateTime, endDateTime))
then
scoreHolder.addHardConstraintMatch(kcontext, -50);
end

Condition: Given an employee unavailability, there is a shift for this employee, the date time
interval of the shift intersects the date time interval of the unavailability.

Action: The hard score is decreased by 50 units.

At most one shift assignment per day per employee

rule "At most one shift assignment per day per employee'

when

then

end

1

$s 1 Shift(
employee != null,
$e : employee,
$leftDay : startDateTime.tolLocalDate())
Shift(
employee == $e,
startDateTime.tolLocalDate() == $leftDay,
this = $s)

scoreHolder.addHardConstraintMatch(kcontext, -10);

Condition: There are two shifts assigned to the same employee, the start date of one shift is equal to
the start date of the other shift.

Action: The hard score is decreased by 10 units.

This rule triggers for any combination of shifts for each employee. So considering n
employees and m shifts, it triggers n*m"2 times. Luckily, the rules triggers just for
shifts that are impacted by a change.

No 2 shifts within 10 hours from each other

rule "No 2 shifts within 10 hours from each other"

when

then

end

$s : Shift(

Shift(

employee != null,
$e : employee,
$1leftEndDateTime : endDateTime)

employee == $e,

$leftEndDateTime <= endDateTime,
$1leftEndDateTime.until(startDateTime, ChronoUnit.HOURS) < 10,
this != $s)

scoreHolder.addHardConstraintMatch(kcontext, -1);

Condition: There are two shifts assigned to the same employee, the end time of the left shift is prior
of the other end time, the time difference between the end time of the left shift and the start time of
the other is less than 10 hours.

Action: The hard score is decreased by 1 unit.

Daily minutes must not exceed contract maximum

rule "Daily minutes must not exceed contract maximum"
when
$employee : Employee($contract : contract, $contract.getMaximumMinutesPerDay()
I= null)
$s : Shift(employee == $employee, $startDateTime : startDateTime)
Number(intValue > $contract.getMaximumMinutesPerDay()) from accumulate(
Shift(employee == $employee, $shiftStart : startDateTime,
$shiftEnd : endDateTime,
$shiftStart.tolocalDate().equals($startDateTime.tolocalDate())),
sum(Duration.between($shiftStart, $shiftEnd).toMinutes())

)
then

scoreHolder.addHardConstraintMatch(kcontext, -1);
end

Condition: The sum of the total minutes assigned to one employee in a day is greater than the
maximum minutes specified by the employee’s contract.
Action: The hard score is decreased by 1 unit.

The remaining three hard constraints are similar to this last one, but for different time frames
specified by the contract (weekly, monthly, yearly).

3.2.1.2. Medium Constraints
Assign every shift
rule "Assign every shift"
when
Shift(employee == null)
then

scoreHolder.addMediumConstraintMatch(kcontext, -1);
end

Condition: There is a shift with no employees assigned.

Action: The medium score is decreased by 1 unit.

3.2.1.3. Soft Constraints

Undesired time slot for an employee

rule "Undesired time slot for an employee"
when
$rosterConstraintConfiguration : RosterConstraintConfiguration
(undesiredTimeSlotWeight != 0)
EmployeeAvailability(
state == EmployeeAvailabilityState.UNDESIRED,
$e : employee,
$startDateTime : startDateTime,
$endDateTime : endDateTime)
Shift(
employee == $e,
DateTimeUtils.doTimeslotsIntersect($startDateTime,$endDateTime,
startDateTime, endDateTime))
then
scoreHolder.addSoftConstraintMatch(kcontext, -$rosterConstraintConfiguration
.getUndesiredTimeSlotWeight());

end
O The first line of the when clause is a technique to dynamically change the weight of
- the constraint. If undesiredTimeSlotWeight is O the constraint is disregarded.

Condition: Given an employee’s undesired date and time slot, there is a shift for this employee such
that the date and time interval of the shift intersects the undesired date and time slot.

Action: The soft score is decreased by undesiredTimeSlotWeight units.

Desired time slot for an employee

rule "Desired time slot for an employee"
when
$rosterConstraintConfiguration : RosterConstraintConfiguration
(desiredTimeSlotWeight != 0)
EmployeeAvailability(
state == EmployeeAvailabilityState.DESIRED,
$e : employee,
$startDateTime : startDateTime,
$endDateTime : endDateTime)
Shift(
employee == $e,
DateTimeUtils.doTimeslotsIntersect($startDateTime,$endDateTime,
startDateTime, endDateTime))
then
scoreHolder.addSoftConstraintMatch(kcontext, +$rosterConstraintConfiguration
.getDesiredTimeSlotWeight());
end

G The first line of the when clause is a technique to dynamically change the weight of
- the constraint. If desiredTimeSlotWeight is O the constraint is disregarded.

Condition: Given an employee desired date and time slot, there is a shift for this employee such that
the date and time interval of the shift intersects the desired date and time slot.

Action: The soft score is increased by desiredTimeSlotWeight units.

Employee is not rotation employee

rule "Employee is not rotation employee"
when
$rosterConstraintConfiguration : RosterConstraintConfiguration

(rotationEmployeeMatchWeight != 0)
Shift(
rotationEmployee != null, employee != null, employee !=
rotationEmployee)

then
scoreHolder.addSoftConstraintMatch(kcontext, -$rosterConstraintConfiguration

.getRotationEmployeeMatchWeight());
end

(r') The first line of the when clause is a technique to dynamically change the weight of
- the constraint. If rotationEmployeeMatchWeight is O the constraint is disregarded.

In general, employees desire to work following a regular schedule: a rotation plan.
o This represents a starting point for the actual schedule that is influenced by other
factors (e.g. temporary unavailability). For this reason, all Shifts are initialized

with a rotationEmployee.

Condition: There a shift that is assigned to an employee which is not the rotation employee.

Action: The soft score is decreased by rotationEmployeeMatchWeight units.

10

Chapter 4. Features in OptaWeb Employee
Rostering

4.1. Test the JPA Database with H2

Before testing the database, make sure the application backend is running. If the application isn’t
running, run the following in the optaweb-employee-rostering-backend directory:

mvn quarkus:dev

Go to http://localhost:8080/h2-console to view the H2 database console. Enter org.h2.Driver in the
Driver Class field and jdbc:h2:mem:employeerostering in the JDBC URL field, and keep the other
default values. Connect, and click on the entities on the left to run SQL statements. This console
allows you to view and modify the application database.

4.2. Test the REST API

As with testing the database, make sure the application backend is running to test the REST APIL. Go
to http://localhost:8080/swagger-ui.html to view documentation and test the REST methods.

11

http://localhost:8080/h2-console
http://localhost:8080/swagger-ui.html

	OptaWeb Employee Rostering User Guide
	Table of Contents
	Chapter 1. OptaWeb Employee Rostering Introduction
	1.1. What is OptaWeb Employee Rostering?
	1.2. Build and Run the Application
	1.3. System Properties

	Chapter 2. Architecture
	Chapter 3. Project Structure
	3.1. Domain Model
	3.2. Constraints
	3.2.1. Constraint definition

	Chapter 4. Features in OptaWeb Employee Rostering
	4.1. Test the JPA Database with H2
	4.2. Test the REST API

