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Chapter 1. OptaPlanner introduction

1.1. What is OptaPlanner?

Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). OptaPlanner optimizes such planning
to do more business with less resources. This is known as Constraint Satisfaction Programming
(which is part of the Operations Research discipline).

OptaPlanner is a lightweight, embeddable constraint satisfaction engine which optimizes planning
problems. It solves use cases such as:
¥ Employee shift rostering : timetabling nurses, repairmen, E
¥ Agenda scheduling : scheduling meetings, appointments, maintenance jobs, advertisements, E
¥ Educational timetabling : scheduling lessons, courses, exams, conference presentations, E

¥ Vehicle routing : planning vehicle routes (trucks, trains, boats, airplanes, E) for moving freight
and/or passengers through multiple destinations using known mapping tools E

¥ Bin packing : filling containers, trucks, ships, and storage warehouses with items, but also
packing information across computer resources, as in cloud computing E

¥ Job shop scheduling : planning car assembly lines, machine queue planning, workforce task
planning, E

¥ Cutting stock : minimizing waste while cutting paper, steel, carpet, E

¥ Sport scheduling : planning games and training schedules for football leagues, baseball leagues,
E

¥ Financial optimization - investment portfolio optimization, risk spreading, E


https://www.optaplanner.org
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1.2. What is a planning problem?



What is a planning problem?

Optimize goals with limited resources under constraints

Optimize goals @ Maximize profit
(» Minimize ecological footprint
» Maximize happiness of employees / customers

With limited resources # Employees
mp Assets (machines, buildings, vehicles, ...)

(&) Time
(&) Budget

Under constraints @ vs (7) Working hours
W vs mp Skills / affinity
@ Vs (>) Logistic conflicts

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:
¥ Maximized profits - the optimal goal results in the highest possible profit.
¥ Minimized ecological footprint - the optimal goal has the least amount of environmental impact.
¥ Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available, such as:

¥ The number of people.
¥ Amount of time.
¥ Budget.
¥ Physical assets, for example, machinery, vehicles, computers, buildings, etc.
Specific constraints related to these resources must also be taken into account, such as the number

of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

OptaPlanner helps Java ™ programmers solve constraint satisfaction problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.



1.2.1. A planning problem is NP-complete or NP-hard

All the use cases above are probably NP-complete/NP-hard , which means in laymanQOs terms:

¥ 1tOs easy to verify a given solution to a problem in reasonable time.

¥ There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, thereOs a $ 1,000,000 reward for anyone that proves if  such a silver bullet
actually exists or not

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the two common techniques wonOt suffice:

¥ A Brute Force algorithm (even a smarter variant) will take too long.

¥ A quick algorithm, for example in bin packing, putting in the largest items first , will return a
solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a near-optimal solution in
reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints
Usually, a planning problem has at least two levels of constraints:

¥ A (negative) hard constraint must not be broken. For example: 1 teacher cannot teach 2 different
lessons at the same time .

¥ A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon

Some problems have positive constraints too:

¥ A positive soft constraint (or reward)  should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning

Some basic problems (such as N queens) only have hard constraints. Some problems have three or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function ) of a planning problem. Each

solution of a planning problem can be graded with a score. With OptaPlanner, score constraints
are written in an Object Oriented language, such as Java ™ code. Such code is easy, flexible and
scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of  solutions . There are several categories of solutions:


https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/P_%3D_NP_problem
https://en.wikipedia.org/wiki/P_%3D_NP_problem

¥ A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

¥ A feasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

¥ An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there are
no feasible solutions and the optimal solution isnOt feasible.

¥ The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time, itOs
an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet

to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms

perform better than others, but itOs impossible to tell in advance. With OptaPlanner, it is easy to
switch the optimization algorithm , by changing the solver configuration in a few lines of XML or
code.

1.3. Requirements

OptaPlanner is open source software, released under the Apache License 2.0 . This license is very
liberal and allows reuse for commercial purposes. Read the laymanOs explanation .

OptaPlanner is 100% pure Java " and runs on Java 11 or higher. It integrates very easily with other
Java™ technologies. OptaPlanner is available in  the Maven Central Repository

OptaPlanner works on any Java Virtual Machine and is compatible with the major JVM languages
and all major platforms.


http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN

Compatibility

OptaPlanner and OptaPy work on all major platforms.

OptaPlanner@

OptaPy &

g} Java . Kotlin @ Python
@ Plain Java @ Quarkus € Spring
¥ Maven & Gradle ‘@ PyPI
A Linux & Mac A% Windows
‘ O OpenShift Kubernetes
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1.4. Governance

1.4.1. Status of OptaPlanner

OptaPlanner is stable, reliable and scalable. It has been heavily tested with unit, integration, and
stress tests, and is used in production throughout the world. One example handles over 50 000
variables with 5000 values each, multiple constraint types and billions of possible constraint
matches.

SeeRelease notes for an overview of recent activity in the project.

1.4.2. Backwards compatibility

OptaPlanner separates its APl and implementation:

¥ Public APl : All classes in the package namespace org.optaplanner.core.api ,
org.optaplanner.benchmark.api , org.optaplanner.test.api and
org.optaplanner.persistenceEapi are 100% backwards compatible in future releases

(especially minor and hotfix releases). In rare circumstances, if the major version number
changes, a few specific classes might have a few backwards incompatible changes, but those

will be clearly documented in

¥ XML configuration

the upgrade recipe .

: The XML solver configuration is backwards compatible for all elements,

except for elements that require the use of non-public API classes. The XML solver configuration


https://www.optaplanner.org/download/upgradeRecipe/

is defined by the classes in the package namespace  org.optaplanner.core.config and
org.optaplanner.benchmark.config

¥ Implementation classes : All other classes are not backwards compatible. They will change in
future major or minor releases (but probably not in hotfix releases). The upgrade recipe
describes every such relevant change and on how to quickly deal with it when upgrading to a
newer version.

This documentation covers some impl classes too. Those documented impl classes
are reliable and safe to use (unless explicity marked as experimental in this
documentation), but weOre just not entirely comfortable yet to write their
signatures in stone.

1.4.3. Community and support

For news and articles, check our blog , twitter (including GeoffreyOs twitter ) and facebook .
If youOre happy with OptaPlanner, make us happy by posting a tweet or blog article about it.

Public questions are welcome on  here. Bugs and feature requests are welcome in  our issue tracker .
Pull requests are very welcome on GitHub and get priority treatment! By open sourcing your
improvements, youOll benefit from our peer review and from our improvements made on top of

your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support
and consulting, take a look at  these services.

1.4.4. Relationship with KIE

OptaPlanner is part of the KIE group of projects . It releases regularly (typically every 3 weeks)
together.

Seethe architecture overview  to learn more about the optional integration with Drools .

1.5. Download and run the examples

1.5.1. Get the release ZIP and run the examples
To try it now:

1. Download a release zip of OptaPlanner from  the OptaPlanner website and unzip it.

2. Open the directory examples and run the script.

Linux or Mac:

$ cd examples
$ ./runExamples.sh

Windows:


https://www.optaplanner.org/download/upgradeRecipe/
https://www.optaplanner.org/blog/
https://twitter.com/OptaPlanner
https://twitter.com/GeoffreyDeSmet
https://www.facebook.com/OptaPlanner
https://www.optaplanner.org/community/getHelp.html
https://issues.redhat.com/browse/PLANNER
https://www.optaplanner.org/product/services.html
http://www.kiegroup.org
http://www.drools.org/
https://www.optaplanner.org

$ cd examples
$ runExamples.bat

Distribution zip

Running the examples locally

@ Surf to www.optaplanner.org

Open the directory examples
and double click on runExamples

v optaplanner-distribution-*
(ERSPIY 42 Download OptaPlanner » [l binaries

v examples
3 binaries
@ Unzip ﬁ optaplanner-distribution-*.zip g date
> sources
=/ runExamples.bat
L:—Ll runExamples.sh ]
» |l javadocs
3 reference_manual
> sources
3 webexamples

=| ReadMeOptaPlanner.txt

=| UpgradeFromPreviousVersionRecipe.txt

The Examples GUI application will open. Pick an example to try it out:
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OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a
mobile JVM as it does on the desktop.

1.5.2. Run the examples in an IDE

To run the examples in IntelliJ IDEA, VSCode or Eclipse:
1. Open the file examples/sources/pom.xml as a new project, the maven integration will take care
of the rest.

2. Run the examples from the project.

1.5.3. Use OptaPlanner with Maven, Gradle, or ANT

The OptaPlanner jars are available in  the central maven repository  (and the snapshots in the JBoss
maven repository ).

If you use Maven, add a dependency to  optaplanner-core in your pom.xmi

<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-core </artifactld>
<version>... </version>

</dependency>

> e mp mp mp


http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~

Or better yet, import the  optaplanner-bom in dependencyManagemeitd avoid duplicating version
numbers when adding other optaplanner dependencies later on:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-bom</artifactid>
<type>pom/type>
<version>... </version>
<scope#mnport </scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-core </artifactld>
</dependency>
<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-persistence-jpa </artifactld>
</dependency>

> [T mp M T e M T e [ T T e T T e T T e T [T TP

E </dependencies>
</project>

If you use Gradle, add a dependency to optaplanner-core in your build.gradle

dependencies {
E implementation ' org.optaplanner:optaplanner-core:...

}

If youOre still using ANT, copy all the jars from the download zipOs binaries directory in your
classpath.

The download zipOs binaries directory contains far more jars then optaplanner-
core actually uses. It also contains the jars used by other modules, such as
optaplanner-benchmark.

Check the maven repository pom.xmlfiles to determine the minimal dependency set
of optaplanner-core etc.
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1.5.4. Build OptaPlanner from source
Prerequisites

¥ Set up Git.
¥ Authenticate on GitHub using either HTTPS or SSH.
I SeeGitHub for more information about setting up and authenticating Git.

¥ Set up Maven .
Build and run the examples from source.

1. Clone optaplanner from GitHub (or alternatively, download the zipball ):

$ git clone https://github.com/kiegroup/optaplanner.git

2. Build it with Maven:

$ cd optaplanner
$ mvn clean install -DskipTests

The first time, Maven might take a long time, because it needs to download
. jars.

3. Run the examples:

$ cd optaplanner-examples
$ mvn exec:java

4. Edit the sources in your favorite IDE.
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https://git-scm.com/
https://help.github.com/articles/set-up-git/
http://maven.apache.org/
https://github.com/kiegroup/optaplanner/zipball/main

Chapter 2. Quick start

2.1. Overview

Each quick start gets you up and running with OptaPlanner quickly. Pick the quick start that best
aligns with your requirements:

¥ Hello World Java

I Build a simple Java application that uses OptaPlanner to optimize a school timetable for
students and teachers.

¥ Quarkus Java (recommended)

! Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

I Quarkus is an extremely fast platform in the Java ecosystem. It is ideal for rapid incremental
development, as well as deployment into the cloud. It also supports native compilation. It
also offers increased performance for OptaPlanner, due to build time optimizations.

¥ Spring Boot Java

! Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

! Spring Boot is another platform in the Java ecosystem.

All three quick starts use OptaPlanner to optimize a school timetable for student and teachers:
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https://quarkus.io

