OptaPlanner@

OptaPlanner User Guide

The OptaPlanner Team

Table of Contents

1. OptaPlanner introduction

1.1. What is OptaPlanner?

1.2. What is a planning problem?
1.2.1. A planning problem is NP-complete or NP-hard
1.2.2. A planning problem has (hard and soft) constraints
1.2.3. A planning problem has a huge search space

1.3. Requirements

1.4. Governance
1.4.1. Status of OptaPlanner
1.4.2. Backwards compatibility
1.4.3. Community and support
1.4.4. Relationship with KIE

1.5. Download and run the examples
1.5.1. Get the release ZIP and run the examples
1.5.2. Run the examples in an IDE
1.5.3. Use OptaPlanner with Maven, Gradle, or ANT
1.5.4. Build OptaPlanner from source

2. Quick start

2.1. Overview

2.2. Hello world Java quick start
2.2.1. What you will build
2.2.2. Solution source code
2.2.3. Prerequisites
2.2.4. The build file and the dependencies
2.2.5. Model the domain objects
2.2.6. Define the constraints and calculate the score
2.2.7. Gather the domain objects in a planning solution
2.2.8. Create the application
2.2.9. Run the application
2.2.10. Summary

2.3. Quarkus Java quick start
2.3.1. What you will build
2.3.2. Solution source code
2.3.3. Prerequisites
2.3.4. The build file and the dependencies
2.3.5. Model the domain objects
2.3.6. Define the constraints and calculate the score

2.3.7. Gather the domain objects in a planning solution

o o N N N N OB oo dDdDDNO PR P

2 DA DN W W W W W W W”WOHK©KOMOMPEPPRPRPPEBEPBPPRPRPRPRRPRPR
O© O N 00 00 0 N N N DD N o N O DB oow NN e

2.3.8. Create the solver service 51

2.3.9. Set the termination time 52
2.3.10. Run the application 53
2.3.11. Summary 58
2.3.12. Further improvements: Database and Ul integration 58
2.4. Spring Boot Java quick start 61
2.4.1. What you will build 61
2.4.2. Solution source code 62
2.4.3. Prerequisites 63
2.4.4. The build file and the dependencies 63
2.4.5. Model the domain objects 65
2.4.6. Define the constraints and calculate the score 70
2.4.7. Gather the domain objects in a planning solution 72
2.4.8. Create the solver service 75
2.4.9. Set the termination time 76
2.4.10. Make the application executable 76
2.4.11. Summary 82
2.4.12. Further improvements: Database and Ul integration 82
3. Use cases and examples 85
3.1. Examples overview 85
3.2. N queens 88
3.2.1. Problem description 88
3.2.2. Problem size 90
3.2.3. Domain model 90
3.3. Cloud balancing 92
3.3.1. Cloud balancing tutorial 92
3.3.2. Using the domain model 94
3.3.3. Run the cloud balancing Hello World 99
3.3.4. Solver configuration 100
3.3.5. Score configuration 102
3.3.6. Beyond this tutorial 109
3.4. Traveling salesman (TSP - traveling salesman problem) 110
3.4.1. Problem description 110
3.4.2. Problem size 110
3.4.3. Problem difficulty 110
3.5. Tennis club scheduling 111
3.5.1. Problem description 111
3.5.2. Problem size 112
3.5.3. Domain model 112
3.6. Meeting scheduling 112

3.6.1. Problem description 112

3.6.2. Problem size

3.7. Course timetabling (ITC 2007 Track 3 - Curriculum Course Scheduling)

3.7.1. Problem description
3.7.2. Problem size
3.7.3. Domain model
3.8. Machine reassignment (Google ROADEF 2012)
3.8.1. Problem description
3.8.2. Value proposition
3.8.3. Problem size
3.8.4. Domain model
3.9. Vehicle routing
3.9.1. Problem description
3.9.2. Value proposition
3.9.3. Problem size
3.9.4. Domain model
3.10. Project job scheduling
3.10.1. Problem description
3.10.2. Problem size
3.11. Hospital bed planning (PAS - Patient Admission Scheduling)
3.11.1. Problem description
3.11.2. Problem size
3.11.3. Domain model
3.12. Task assigning
3.12.1. Problem description
3.12.2. Value proposition
3.12.3. Problem size
3.12.4. Domain model
3.13. Exam timetabling (ITC 2007 track 1 - Examination)
3.13.1. Problem description
3.13.2. Problem size
3.13.3. Domain model
3.14. Nurse rostering (INRC 2010)
3.14.1. Problem description
3.14.2. Value proposition
3.14.3. Problem size
3.14.4. Domain model
3.15. Traveling tournament problem (TTP)
3.15.1. Problem description
3.15.2. Problem size
3.16. Conference scheduling

3.16.1. Problem description

113
113
113
114
114
115
115
116
117
118
119
119
120
120
124
129
129
130
131
131
133
133
134
134
135
135
135
136
136
138
138
139
139
141
141
144
144
144
145
146
146

3.16.2. Value proposition 151

3.16.3. Problem size 151
3.16.4. Architecture 151
3.16.5. Domain model 152
3.16.6. Search space 153
3.17. Flight crew scheduling 155
3.17.1. Problem description 155
3.17.2. Problem size 156

4. OptaPlanner configuration 157
4.1. Overview 157
4.2. Solver configuration 157
4.2.1. Solver configuration by XML 157
4.2.2. Solver configuration by Java API 159
4.2.3. Annotation alternatives 160
4.2.4. Domain access 160
4.2.5. Custom properties configuration 160
4.3. Model a planning problem 161
4.3.1. Is this class a problem fact or planning entity? 161
4.3.2. Problem fact 162
4.3.3. Planning entity 163
4.3.4. Planning variable (genuine) 166
4.3.5. Planning value and planning value range 168
4.3.6. Planning list variable (VRP, Task assigning, E) 175
4.3.7. Chained planning variable (TSP, VRP, E) 177
4.3.8. Planning problem and planning solution 179
4.4, Use the Solver 188
4.4.1. The Solver interface 188
4.4.2. Solving a problem 189
4.4.3. Environment mode: are there bugs in my code? 190
4.4.4. Logging level: what is the Solver doing? 192
4.4.5. Monitoring the solver 195
4.4.6. Random number generator 197
4.5. SolverManager 198
4.5.1. Solve batch problems 199
4.5.2. Solve and listen to show progress to the end-user 200

5. Score calculation 202
5.1. Score terminology 202
5.1.1. What is a score? 202
5.1.2. Formalize the business constraints 202
5.1.3. Score constraint signum (positive or negative) 203

5.1.4. Score constraint weight 204

5.1.5. Score constraint level (hard, soft, E) 205

5.1.6. Pareto scoring (AKA multi-objective optimization scoring) 207
5.1.7. Combining score techniques 209
5.1.8. Score interface 209
5.1.9. Avoid floating point numbers in score calculation 210
5.2. Choose a score type 212
5.2.1. SimpleScore 212
5.2.2. HardSoftScore (Recommended) 212
5.2.3. HardMediumSoftScore 212
5.2.4. BendableScore 213
5.3. Calculate the Score 213
5.3.1. Score calculation types 213
5.3.2. Easy Java score calculation 214
5.3.3. Incremental Java score calculation 216
5.3.4. InitializingScoreTrend 221
5.3.5. Invalid score detection 222
5.4. Score calculation performance tricks 223
5.4.1. Overview 223
5.4.2. Score calculation speed 223
5.4.3. Incremental score calculation (with deltas) 223
5.4.4. Avoid calling remote services during score calculation 225
5.4.5. Pointless constraints 225
5.4.6. Built-in hard constraint 226
5.4.7. Other score calculation performance tricks 226
5.4.8. Score trap 226
5.4.9. stepLimit benchmark 228
5.4.10. Fairness score constraints 228
5.5. Constraint configuration: adjust constraint weights dynamically 230
5.5.1. Create a constraint configuration 231
5.5.2. Add a constraint weight for each constraint 232
5.6. Explaining the score: which constraints are broken? 234
5.6.1. Using score calculation outside the Solver 235
5.6.2. Break down the score by constraint justification 236
5.6.3. Break down the score by constraint 237
5.6.4. Indictment heat map: visualize the hot planning entities 237
5.7. Testing score constraints 238
6. Constraint streams score calculation 239
6.1. Introduction 239
6.2. Creating a constraint stream 242
6.3. Constraint stream cardinality 243

6.3.1. Achieving higher cardinalities 244

6.4. Building blocks
6.4.1. ForEach
6.4.2. Penalties and rewards
6.4.3. Filtering
6.4.4. Joining
6.4.5. Grouping and collectors
6.4.6. Conditional propagation
6.4.7. Mapping tuples
6.4.8. Flattening
6.5. Testing a constraint stream
6.5.1. Testing constraints in isolation
6.5.2. Testing all constraints together
6.5.3. Testing in Quarkus
6.5.4. Testing in Spring Boot
6.6. Variant implementation types
7. Drools score calculation (Deprecated)
7.1. Overview
7.2. Drools score rules configuration
7.2.1. AscoreDrl resource on the classpath
7.2.2. AscoreDrlFile element
7.3. Implementing a score rule
7.4. Weighing score rules
7.5. Testing Drools-based constraints
8. Shadow variable
8.1. Introduction
8.2. Bi-directional variable (inverse relation shadow variable)
8.3. Anchor shadow variable
8.4. List variable shadow variables
8.4.1. Inverse relation shadow variable
8.4.2. Previous and next element shadow variable
8.5. Custom VariableListener
8.5.1. Multiple source variables
8.5.2. Piggyback shadow variable
8.5.3. Shadow variable cloning
8.6. VariableListener triggering order
9. Optimization algorithms
9.1. Search space size in the real world
9.2. Does OptaPlanner find the optimal solution?
9.3. Architecture overview
9.4. Optimization algorithms overview

9.5. Which optimization algorithms should | use?

244
245
245
247
249
251
257
258
259
260
260
262
262
262
263
264
264
264
264
265
266
266
269
271
271
272
274
274
274
275
276
277
278
279
279
281
281
282
283
284
286

9.6. Power tweaking or default parameter values 287

9.7. Solver phase 287
9.8. Scope overview 289
9.9. Termination 290
9.9.1. Time spent termination 290
9.9.2. Unimproved time spent termination 292
9.9.3. BestScoreTermination 294
9.9.4. BestScoreFeasibleTermination 294
9.9.5. StepCountTermination 295
9.9.6. UnimprovedStepCountTermination 295
9.9.7. ScoreCalculationCountTermination 295
9.9.8. Combining multiple terminations 295
9.9.9. Asynchronous termination from another thread 296
9.10. SolverEventListener 296
9.11. Custom solver phase 297
9.12. No change solver phase 299
9.13. Multithreaded solving 299
9.13.1. @Planningld 300
9.13.2. Custom thread factory (WildFly, Android, GAE, E) 301
9.13.3. Multithreaded incremental solving 301
10. Move and neighborhood selection 304
10.1. Move and neighborhood introduction 304
10.1.1. What is a Mov®@ 304
10.1.2. What is a MoveSelector? 305
10.1.3. Subselecting of entities, values, and other moves 305
10.2. Generic MoveSelectors 306
10.2.1. Generic MoveSelectors overview 307
10.2.2. ChangeMoveSelector 307
10.2.3. SwapMoveSelector 309
10.2.4. Pillar-based move selectors 310
10.2.5. Move selectors for list variables 314
10.2.6. Move selectors for chained variables 316
10.3. Combining multiple MoveSelectors 319
10.3.1. unionMoveSelector 319
10.3.2. cartesianProductMoveSelector 321
10.4. EntitySelector 322
10.5. ValueSelector 322
10.6. General Selector features 323
10.6.1. CacheTypecreate moves ahead of time or just in time 323
10.6.2. SelectionOrder : original, sorted, random, shuffled, or probabilistic 324

10.6.3. Recommended combinations of CacheTypand SelectionOrder 325

10.6.4. Filtered selection
10.6.5. Sorted selection
10.6.6. Probabilistic selection
10.6.7. Limited selection
10.6.8. Mimic selection (record/replay)
10.6.9. Nearby selection

10.7. Custom moves
10.7.1. Which move types might be missing in my implementation?
10.7.2. Custom moves introduction
10.7.3. The Moventerface
10.7.4. Generating custom moves

11. Exhaustive search

11.1. Overview

11.2. Brute force
11.2.1. Algorithm description
11.2.2. Configuration

11.3. Branch and bound
11.3.1. Algorithm description
11.3.2. Configuration

11.4. Scalability of exhaustive search

12. Construction heuristics

12.1. Overview

12.2. First fit
12.2.1. Algorithm description
12.2.2. Configuration

12.3. First fit decreasing
12.3.1. Algorithm description
12.3.2. Configuration

12.4. Weakest fit
12.4.1. Algorithm description
12.4.2. Configuration

12.5. Weakest fit decreasing
12.5.1. Algorithm description
12.5.2. Configuration

12.6. Strongest fit
12.6.1. Algorithm description
12.6.2. Configuration

12.7. Strongest fit decreasing
12.7.1. Algorithm description
12.7.2. Configuration

12.8. Allocate entity from queue

328
331
334
336
336
336
340
340
341
341
345
348
348
348
348
349
349
349
350
352
355
355
355
355
356
356
356
357
358
358
358
358
358
359
359
359
359
360
360
360
361

12.8.1. Algorithm description
12.8.2. Configuration
12.8.3. Multiple entity classes
12.8.4. Pick early type

12.9. Allocate to value from queue
12.9.1. Algorithm description
12.9.2. Configuration

12.10. Cheapest insertion
12.10.1. Algorithm description
12.10.2. Configuration

12.11. Regret insertion
12.11.1. Algorithm description
12.11.2. Configuration

12.12. Allocate from pool
12.12.1. Algorithm description
12.12.2. Configuration

12.13. Scaling construction heuristics
12.13.1. InitializingScoreTrend shortcuts
12.13.2. Scaling multiple planning variables in construction heuristics
12.13.3. Other scaling techniques in construction heuristics

13. Local search

13.1. Overview

13.2. Local search concepts
13.2.1. Step by step
13.2.2. Decide the next step
13.2.3. Acceptor
13.2.4. Forager

13.3. Hill climbing (simple local search)
13.3.1. Algorithm description
13.3.2. Stuck in local optima
13.3.3. Configuration

13.4. Tabu search
13.4.1. Algorithm description
13.4.2. Configuration

13.5. Simulated annealing
13.5.1. Algorithm description
13.5.2. Configuration

13.6. Late acceptance
13.6.1. Algorithm description
13.6.2. Configuration

13.7. Great Deluge

361
361
362
363
364
364
364
365
365
366
367
367.
367
367
367.
367
368
368
368
371
372
372
372
372
374
376
376
378
378
378
379
380
380
380
382
382
383
384
384
385
385

13.7.1. Algorithm description 385

13.7.2. Configuration 386
13.8. Step counting hill climbing 387
13.8.1. Algorithm description 387
13.8.2. Configuration 387
13.9. Strategic oscillation 387
13.9.1. Algorithm description 387
13.9.2. Configuration 387
13.10. Variable neighborhood descent 388
13.10.1. Algorithm description 388
13.10.2. Configuration 388
13.11. Using a custom Termination , MoveSelector, EntitySelector , ValueSelector , or Acceptor 389
14. Evolutionary algorithms 391
14.1. Overview 391
14.2. Evolutionary strategies 391
14.3. Genetic algorithms 391
15. Hyperheuristics 392
15.1. Overview 392
16. Partitioned search 393
16.1. Algorithm description 393
16.2. Configuration 394
16.3. Partitioning a solution 395
16.3.1. Custom SolutionPartitioner 395
16.4. Runnable part thread limit 397
17. Benchmarking and tweaking 399
17.1. Find the best solver configuration 399
17.2. Benchmark configuration 399
17.2.1. Add a dependency on optaplanner-benchmark 399
17.2.2. Run a simple benchmark 400
17.2.3. Configure and run an advanced benchmark 400
17.2.4. SolutionFilelO : input and output of solution files 402
17.2.5. Warming up the HotSpot compiler 405
17.2.6. Benchmark blueprint: a predefined configuration 405
17.2.7. Write the output solution of benchmark runs 407
17.2.8. Benchmark logging 407
17.3. Benchmark report 407
17.3.1. HTML report 407
17.3.2. Ranking the solvers 408
17.4. Summary statistics 409
17.4.1. Best score summary (graph and table) 409

17.4.2. Best score scalability summary (graph) 410

17.4.3. Best score distribution summary (graph) 410

17.4.4. Winning score difference summary (graph And table) 411
17.4.5. Worst score difference percentage (ROI) summary (graph And table) 411
17.4.6. Score calculation speed summary (graph And table) 411
17.4.7. Time spent summary (graph And table) 412
17.4.8. Time spent scalability summary (graph) 412
17.4.9. Best score per time spent summary (graph) 412
17.5. Statistic per dataset (graph and CSV) 412
17.5.1. Enable a problem statistic 412
17.5.2. Best score over time statistic (graph and CSV) 413
17.5.3. Step score over time statistic (graph and CSV) 415
17.5.4. Score calculation speed over time statistic (graph and CSV) 416
17.5.5. Best solution mutation over time statistic (graph and CSV) 417
17.5.6. Move count per step statistic (graph and CSV) 418
17.5.7. Memory use statistic (graph and CSV) 419
17.6. Statistic per single benchmark (graph and CSV) 420
17.6.1. Enable a single statistic 420
17.6.2. Constraint match total best score over time statistic (graph and CSV) 421
17.6.3. Constraint match total step score over time statistic (graph and CSV) 422
17.6.4. Picked move type best score diff over time statistic (graph and CSV) 423
17.6.5. Picked move type step score diff over time statistic (graph and CSV) 424
17.7. Advanced benchmarking 425
17.7.1. Benchmarking performance tricks 425
17.7.2. Statistical benchmarking 426
17.7.3. Template-based benchmarking and matrix benchmarking 427
17.7.4. Benchmark report aggregation 429
18. Repeated planning 432
18.1. Introduction to repeated planning 432
18.2. Backup planning 432
18.3. Overconstrained planning 433
18.3.1. Overconstrained planning with nullable variables 433
18.3.2. Overconstrained planning with virtual values 434
18.4. Continuous planning (windowed planning) 435
18.4.1. Pinned planning entities 438
18.4.2. Nonvolatile replanning to minimize disruption (semi-movable planning entities) 439
18.5. Real-time planning 441
18.5.1. ProblemChange 442
18.5.2. Daemon: solve() does not return 446
18.6. Multi-stage planning 447
19. Integration 449

19.1. Overview 449

19.2. Persistent storage
19.2.1. Database: JPA and Hibernate
19.2.2. XML or JSON: JAXB
19.2.3. JSON: Jackson
19.2.4. JSON: JSON-B
19.3. Quarkus
19.4. Spring Boot
19.5. SOA and ESB
19.5.1. Camel and Karaf
19.6. Other environments
19.6.1. Java platform module system (Jigsaw)
19.6.2. OSGi
19.6.3. Android
19.7. Integration with human planners (politics)
19.8. Sizing hardware and software
20. Design patterns
20.1. Design patterns introduction
20.2. Domain modeling guidelines
20.3. Assigning time to planning entities
20.3.1. Timeslot pattern: assign to a fixed-length timeslot
20.3.2. TimeGrain pattern: assign to a starting TimeGrain
20.3.3. Chained through time pattern: assign in a chain that determines starting time
20.3.4. Time bucket pattern: assign to a capacitated bucket per time period
20.4. Cloud architecture patterns
21. Development
21.1. Methodology overview
21.2. Development guidelines
21.2.1. Fail fast
21.2.2. Exception messages
21.2.3. Generics
21.2.4. Lifecycle

22. Release Notes

449
449
452
454
455
456
458
459
459
459
460
460
460
460
462
465
465
A6GS5
468
A7l
A7l
472
476
A76
479
479
480
480
480
481
481
482

Chapter 1. OptaPlanner introduction

1.1. What is OptaPlanner?

Every organization faces planning problems: providing products or services with a limited set of
constrained resources (employees, assets, time and money). OptaPlanner optimizes such planning
to do more business with less resources. This is known as Constraint Satisfaction Programming
(which is part of the Operations Research discipline).

OptaPlanner is a lightweight, embeddable constraint satisfaction engine which optimizes planning
problems. It solves use cases such as:
¥ Employee shift rostering : timetabling nurses, repairmen, E
¥ Agenda scheduling : scheduling meetings, appointments, maintenance jobs, advertisements, E
¥ Educational timetabling : scheduling lessons, courses, exams, conference presentations, E

¥ Vehicle routing : planning vehicle routes (trucks, trains, boats, airplanes, E) for moving freight
and/or passengers through multiple destinations using known mapping tools E

¥ Bin packing : filling containers, trucks, ships, and storage warehouses with items, but also
packing information across computer resources, as in cloud computing E

¥ Job shop scheduling : planning car assembly lines, machine queue planning, workforce task
planning, E

¥ Cutting stock : minimizing waste while cutting paper, steel, carpet, E

¥ Sport scheduling : planning games and training schedules for football leagues, baseball leagues,
E

¥ Financial optimization - investment portfolio optimization, risk spreading, E

https://www.optaplanner.org

Job shop scheduling

1 2 3 4 5 g)
1 1 1 1 1 1
Vehicle routing
Equipment scheduling Job 1
MNovember Job 2 o
1 2 3 4 15
R — Job 3
Thing 1 Job 4 # :
Thing 2 Less makespan (%
©,, L
O ptaP g
H‘ng\“e‘ a a NN er
Optimize planning
ﬂ/.g, with Artificial Intelligence
Employee rostering &,
“
Sun Mon Tue N
& 14 221 & 14 22) & 14 2 .
TN SN T N N SN I AN SN N meﬂlaﬂon
{4 ad
- - - | Free \es° f Bin packing
—§—~ i Free - CPU RAM
d - _
Y m Free | Free w2 (2 S
@ | Free « @A (3 mED
@ Free F ‘

1.2. What is a planning problem?

What is a planning problem?

Optimize goals with limited resources under constraints

Optimize goals @ Maximize profit
(» Minimize ecological footprint
» Maximize happiness of employees / customers

With limited resources # Employees
mp Assets (machines, buildings, vehicles, ...)

(&) Time
(&) Budget

Under constraints @ vs (7) Working hours
W vs mp Skills / affinity
@ Vs (>) Logistic conflicts

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:
¥ Maximized profits - the optimal goal results in the highest possible profit.
¥ Minimized ecological footprint - the optimal goal has the least amount of environmental impact.
¥ Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available, such as:

¥ The number of people.
¥ Amount of time.
¥ Budget.
¥ Physical assets, for example, machinery, vehicles, computers, buildings, etc.
Specific constraints related to these resources must also be taken into account, such as the number

of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

OptaPlanner helps Java ™ programmers solve constraint satisfaction problems efficiently. Under the
hood, it combines optimization heuristics and metaheuristics with very efficient score calculation.

1.2.1. A planning problem is NP-complete or NP-hard

All the use cases above are probably NP-complete/NP-hard , which means in laymanQOs terms:

¥ 1tOs easy to verify a given solution to a problem in reasonable time.

¥ There is no silver bullet to find the optimal solution of a problem in reasonable time (*).

(*) At least, none of the smartest computer scientists in the world have found such
a silver bullet yet. But if they find one for 1 NP-complete problem, it will work for
every NP-complete problem.

In fact, thereOs a $ 1,000,000 reward for anyone that proves if such a silver bullet
actually exists or not

The implication of this is pretty dire: solving your problem is probably harder than you anticipated,
because the two common techniques wonOt suffice:

¥ A Brute Force algorithm (even a smarter variant) will take too long.

¥ A quick algorithm, for example in bin packing, putting in the largest items first , will return a
solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner does find a near-optimal solution in
reasonable time for such planning problems.

1.2.2. A planning problem has (hard and soft) constraints
Usually, a planning problem has at least two levels of constraints:

¥ A (negative) hard constraint must not be broken. For example: 1 teacher cannot teach 2 different
lessons at the same time .

¥ A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon

Some problems have positive constraints too:

¥ A positive soft constraint (or reward) should be fulfilled if possible. For example: Teacher B likes
to teach on Monday morning

Some basic problems (such as N queens) only have hard constraints. Some problems have three or
more levels of constraints, for example hard, medium and soft constraints.

These constraints define the score calculation (AKA fitness function) of a planning problem. Each

solution of a planning problem can be graded with a score. With OptaPlanner, score constraints
are written in an Object Oriented language, such as Java ™ code. Such code is easy, flexible and
scalable.

1.2.3. A planning problem has a huge search space

A planning problem has a number of solutions . There are several categories of solutions:

https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/P_%3D_NP_problem
https://en.wikipedia.org/wiki/P_%3D_NP_problem

¥ A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems tend to have an incredibly large number of possible solutions. Many of those solutions
are worthless.

¥ A feasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

¥ An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the case that there are
no feasible solutions and the optimal solution isnOt feasible.

¥ The best solution found is the solution with the highest score found by an implementation in a
given amount of time. The best solution found is likely to be feasible and, given enough time, itOs
an optimal solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a
small dataset. As you can see in the examples, most instances have a lot more possible solutions
than the minimal number of atoms in the known universe (10780). Because there is no silver bullet

to find the optimal solution, any implementation is forced to evaluate at least a subset of all those
possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly
large number of possible solutions. Depending on the use case, some optimization algorithms

perform better than others, but itOs impossible to tell in advance. With OptaPlanner, it is easy to
switch the optimization algorithm , by changing the solver configuration in a few lines of XML or
code.

1.3. Requirements

OptaPlanner is open source software, released under the Apache License 2.0 . This license is very
liberal and allows reuse for commercial purposes. Read the laymanOs explanation .

OptaPlanner is 100% pure Java " and runs on Java 11 or higher. It integrates very easily with other
Java™ technologies. OptaPlanner is available in the Maven Central Repository

OptaPlanner works on any Java Virtual Machine and is compatible with the major JVM languages
and all major platforms.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/foundation/licence-FAQ.html#WhatDoesItMEAN

Compatibility

OptaPlanner and OptaPy work on all major platforms.

OptaPlanner@

OptaPy &

g} Java . Kotlin @ Python
@ Plain Java @ Quarkus € Spring
¥ Maven & Gradle ‘@ PyPI
A Linux & Mac A% Windows
‘ O OpenShift Kubernetes
i | ocal
{ IBM Cloud AWS Azure Google Cloud

1.4. Governance

1.4.1. Status of OptaPlanner

OptaPlanner is stable, reliable and scalable. It has been heavily tested with unit, integration, and
stress tests, and is used in production throughout the world. One example handles over 50 000
variables with 5000 values each, multiple constraint types and billions of possible constraint
matches.

SeeRelease notes for an overview of recent activity in the project.

1.4.2. Backwards compatibility

OptaPlanner separates its APl and implementation:

¥ Public APl : All classes in the package namespace org.optaplanner.core.api ,
org.optaplanner.benchmark.api , org.optaplanner.test.api and
org.optaplanner.persistenceEapi are 100% backwards compatible in future releases

(especially minor and hotfix releases). In rare circumstances, if the major version number
changes, a few specific classes might have a few backwards incompatible changes, but those

will be clearly documented in

¥ XML configuration

the upgrade recipe .

: The XML solver configuration is backwards compatible for all elements,

except for elements that require the use of non-public API classes. The XML solver configuration

https://www.optaplanner.org/download/upgradeRecipe/

is defined by the classes in the package namespace org.optaplanner.core.config and
org.optaplanner.benchmark.config

¥ Implementation classes : All other classes are not backwards compatible. They will change in
future major or minor releases (but probably not in hotfix releases). The upgrade recipe
describes every such relevant change and on how to quickly deal with it when upgrading to a
newer version.

This documentation covers some impl classes too. Those documented impl classes
are reliable and safe to use (unless explicity marked as experimental in this
documentation), but weOre just not entirely comfortable yet to write their
signatures in stone.

1.4.3. Community and support

For news and articles, check our blog , twitter (including GeoffreyOs twitter) and facebook .
If youOre happy with OptaPlanner, make us happy by posting a tweet or blog article about it.

Public questions are welcome on here. Bugs and feature requests are welcome in our issue tracker .
Pull requests are very welcome on GitHub and get priority treatment! By open sourcing your
improvements, youOll benefit from our peer review and from our improvements made on top of

your improvements.

Red Hat sponsors OptaPlanner development by employing the core team. For enterprise support
and consulting, take a look at these services.

1.4.4. Relationship with KIE

OptaPlanner is part of the KIE group of projects . It releases regularly (typically every 3 weeks)
together.

Seethe architecture overview to learn more about the optional integration with Drools .

1.5. Download and run the examples

1.5.1. Get the release ZIP and run the examples
To try it now:

1. Download a release zip of OptaPlanner from the OptaPlanner website and unzip it.

2. Open the directory examples and run the script.

Linux or Mac:

$ cd examples
$./runExamples.sh

Windows:

https://www.optaplanner.org/download/upgradeRecipe/
https://www.optaplanner.org/blog/
https://twitter.com/OptaPlanner
https://twitter.com/GeoffreyDeSmet
https://www.facebook.com/OptaPlanner
https://www.optaplanner.org/community/getHelp.html
https://issues.redhat.com/browse/PLANNER
https://www.optaplanner.org/product/services.html
http://www.kiegroup.org
http://www.drools.org/
https://www.optaplanner.org

$ cd examples
$ runExamples.bat

Distribution zip

Running the examples locally

@ Surf to www.optaplanner.org

Open the directory examples
and double click on runExamples

v optaplanner-distribution-*
(ERSPIY 42 Download OptaPlanner » [l binaries

v examples
3 binaries
@ Unzip ﬁ optaplanner-distribution-*.zip g date
> sources
=/ runExamples.bat
L:—Ll runExamples.sh]
» |l javadocs
3 reference_manual
> sources
3 webexamples

=| ReadMeOptaPlanner.txt

=| UpgradeFromPreviousVersionRecipe.txt

The Examples GUI application will open. Pick an example to try it out:

OptaPlanner examples x

Which example do you want to see?

= G0 e s
‘ Nurse rostering ‘ ‘ m Traveling salesman ‘ | @ Task assigning ‘ ‘ %g;dg; Cloud balancing
& e IL/:

- ‘

T
B R

e
i {@-3 Machine reassignment

S +
% Conference scheduling Vehicle routing h Hospital bed planning -
900 | B I I |
-

=
Course timetabling Rock tour == Project job scheduling w N gueens
| | = H |
—

— L]
|_ [——]] B
‘ Ijh Exam timetabling ‘ ‘ W Coach shuttle gathering ‘ | "\ Cheap time scheduling O ID | Scrabble compacter
— £ oo
= s | |

‘ % Meeting scheduling ‘ ‘ \ Traveling tournament ‘ | ,“Z/,/%L\ Investment allocation ‘ ‘ :: Dinner party ‘

@ 18
@

Tennis club scheduling

Description

LS

| Show web examples |

www.optaplanner.org]

Ml

Documentation |

OptaPlanner itself has no GUI dependencies. It runs just as well on a server or a
mobile JVM as it does on the desktop.

1.5.2. Run the examples in an IDE

To run the examples in IntelliJ IDEA, VSCode or Eclipse:
1. Open the file examples/sources/pom.xml as a new project, the maven integration will take care
of the rest.

2. Run the examples from the project.

1.5.3. Use OptaPlanner with Maven, Gradle, or ANT

The OptaPlanner jars are available in the central maven repository (and the snapshots in the JBoss
maven repository).

If you use Maven, add a dependency to optaplanner-core in your pom.xmi

<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-core </artifactld>
<version>... </version>

</dependency>

> e mp mp mp

http://search.maven.org/#search|ga|1|org.optaplanner
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.optaplanner~~~~

Or better yet, import the optaplanner-bom in dependencyManagemeitd avoid duplicating version
numbers when adding other optaplanner dependencies later on:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-bom</artifactid>
<type>pom/type>
<version>... </version>
<scope#mnport </scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-core </artifactld>
</dependency>
<dependency>
<groupld>org.optaplanner </groupld>
<artifactld> optaplanner-persistence-jpa </artifactld>
</dependency>

> [T mp M T e M T e [T T e T T e T T e T [T TP

E </dependencies>
</project>

If you use Gradle, add a dependency to optaplanner-core in your build.gradle

dependencies {
E implementation ' org.optaplanner:optaplanner-core:...

}

If youOre still using ANT, copy all the jars from the download zipOs binaries directory in your
classpath.

The download zipOs binaries directory contains far more jars then optaplanner-
core actually uses. It also contains the jars used by other modules, such as
optaplanner-benchmark.

Check the maven repository pom.xmlfiles to determine the minimal dependency set
of optaplanner-core etc.

10

1.5.4. Build OptaPlanner from source
Prerequisites

¥ Set up Git.
¥ Authenticate on GitHub using either HTTPS or SSH.
I SeeGitHub for more information about setting up and authenticating Git.

¥ Set up Maven .
Build and run the examples from source.

1. Clone optaplanner from GitHub (or alternatively, download the zipball):

$ git clone https://github.com/kiegroup/optaplanner.git

2. Build it with Maven:

$ cd optaplanner
$ mvn clean install -DskipTests

The first time, Maven might take a long time, because it needs to download
. jars.

3. Run the examples:

$ cd optaplanner-examples
$ mvn exec:java

4. Edit the sources in your favorite IDE.

11

https://git-scm.com/
https://help.github.com/articles/set-up-git/
http://maven.apache.org/
https://github.com/kiegroup/optaplanner/zipball/main

Chapter 2. Quick start

2.1. Overview

Each quick start gets you up and running with OptaPlanner quickly. Pick the quick start that best
aligns with your requirements:

¥ Hello World Java

I Build a simple Java application that uses OptaPlanner to optimize a school timetable for
students and teachers.

¥ Quarkus Java (recommended)

! Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

I Quarkus is an extremely fast platform in the Java ecosystem. It is ideal for rapid incremental
development, as well as deployment into the cloud. It also supports native compilation. It
also offers increased performance for OptaPlanner, due to build time optimizations.

¥ Spring Boot Java

! Build a REST application that uses OptaPlanner to optimize a school timetable for students
and teachers.

! Spring Boot is another platform in the Java ecosystem.

All three quick starts use OptaPlanner to optimize a school timetable for student and teachers:

12

https://quarkus.io

